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ABSTRACT
Freehand interactions with augmented and virtual reality are grow-
ing in popularity, but they lack reliability and robustness. Implicit
behavior from users, such as hand or gaze movements, might pro-
vide additional signals to improve the reliability of input. In this
paper, the primary goal is to improve the detection of a selection
gesture in VR during point-and-click interaction. Thus, we propose
and investigate the use of information contained within the hand
motion dynamics that precede a selection gesture. We built two
models that classified if a user is likely to perform a selection ges-
ture at the current moment in time. We collected data during a
pointing-and-selection task from 15 participants and trained two
models with different architectures, i.e., a logistic regression clas-
sifier was trained using predefined hand motion features and a
temporal convolutional network (TCN) classifier was trained using
raw hand motion data. Leave-one-subject-out cross-validation PR-
AUCs of 0.36 and 0.90 were obtained for each model respectively,
demonstrating that the models performed well above chance (=0.13).
The TCN model was found to improve the precision of a noisy se-
lection gesture by 11.2% without sacrificing recall performance. An
initial analysis of the generalizability of the models demonstrated
above-chance performance, suggesting that this approach could be
scaled to other interaction tasks in the future.
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1 INTRODUCTION
To support natural and immersive experiences in augmented reality
(AR) or virtual reality (VR), systems have been leveraging freehand
interactions, which rely on computer vision or wrist-based sensing
technologies [25, 49, 59]. These systems recognize and track mid-
air, freehand user input rather than relying on users to perform
specific input actions using controllers or joysticks. Although these
freehand technologies are intuitive and less encumbered, they in-
troduce new challenges because they require highly robust input
recognizers and effortless interaction techniques.

Unfortunately, mid-air gesture detection is relatively unreliable.
Vision-based tracking systems tend to fail when occlusion occurs
[6], while wrist-based sensing techniques are sensitive to motion ar-
tifacts and sensor placements [47]. The use of these techniques also
often results in false positive and false negatives during recogni-
tion [6, 21, 38, 70], which can significantly impact user experiences
[41]. To reduce the false positives that occur when detecting a
thumb-finger pinch gesture using a smartwatch, Wen et al. [65]
proposed using an activation gesture so that input events would
only be detected when the system was activated. This is a non-
optimal solution because it places an undue burden on the user to
perform additional actions. In this paper, we propose an alterna-
tive approach to improve the detection of a selection gesture in
VR during point-and-click interaction by harnessing natural user
behaviors to implicitly infer whether a user intends to make a se-
lection. To this end, we present our approach that does Real-time
Implicit Detection of Selections (RIDS). RIDS leverages historical
hand motion dynamics during freehand pointing to detect the prob-
ability of a user’s selection gesture at any time, independently of,
and agnostic to, the actual sensing of the gesture (e.g., a finger-
thumb pinch) and the selection target. RIDS increases selection
accuracy when the sensing of a selection gesture is noisy, which
often occurs with wearable systems when freehand gestures are
performed. As demonstrated in this work, fusing the output from
RIDS with a gesture sensing model increases selection accuracy.

Prior research on implicit input detection has only explored
using natural gaze behavior for point-and-select VR tasks [18]. The
drawbacks to using gaze are that eye-tracking technology is not
integrated within most consumer AR/VR devices and eye-trackers
are influenced by variations in scene brightness, eyeglasses, and
eye tracker biases [17]. As such, this research explores whether
hand motion dynamics during pointing in VR might be useful for
improving the detection of a selection gesture.

To this end, data was collected during a pointing and selection
task that was representative of a VR game. The hand motion data
was then used to build two different RIDS models, one using logistic
regression and the other using a temporal convolutional network
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(TCN). During an evaluation of the models, Leave-one-subject-out
cross-validation (LOSOCV) PR-AUC scores of 0.36 and 0.90, were
reported (chance= 0”13). Further testing of the model was then
conducted using an existing VR pointing dataset to explore the
generalizability of the model. Finally, the model was fused with
a noisy inertial pinch model and found to increase the selection
PR-AUC by 11.19%.

The primary contribution of this research is the development
and demonstration of two RIDS models that performed well above
chance in a VR setting using users' natural hand motion dynam-
ics. The secondary contributions are an analysis of the models'
generalizability to other point-and-select task scenarios and the
application of the TCN model to increase the precision of a noisy
selection gesture.

2 RELATED WORK
This work builds upon prior research on hand motion dynamics in
VR selection and explicit input prediction during pointing.

2.1 Hand Motion Dynamics During Pointing
It is generally assumed that hand motions while pointing consist
of predictable patterns that can be modeled [5, 22, 51]. This as-
sumption formed the basis of our motivation to use hand motion
dynamics for RIDS. As there are several kinematic parameters from
the experimental arm pointing literature that measure predictable
patterns over the course of the arm's trajectory (i.e., velocity, peak
velocity, time to peak velocity, index of velocity shape etc., [9]),
these features were explored in our logistic regression model.

In terms of models, the most well-established model explaining
hand motion while pointing is Meyer et al.'s hybrid OII model [50]
which separated pointing motions into two distinct stages: a high
velocity, large movement to bring the pointer close enough to a
target without visual tracking (i.e., the ballistic phase), and a lower
velocity, corrective movement to reach a target under feedback con-
trol (i.e., the corrective phase). A further assumption noted that this
behavior was the result of humans trying to behave optimally ac-
cording to a certain internalized cost function [22]. Flash and Hogan
[23] proposed that this function took the form of a minimum jerk
model, where humans aimed to minimize the jerk (i.e., derivative
of acceleration) and generate smooth movements, at least during
the ballistic phase of movement. Alternatively, other research pro-
posed a minimum acceleration model [10]. Berret et al. argued that
vertical arm movements in the air minimized absolute work, the
energy consumption of the muscular forces [10]. One implication
that results from these models explaining ballistic motion is that
as a user gets closer to selecting a target, they would switch from
ballistic to corrective motion, possibly resulting in more frequent
instances of higher jerk, for example. The variation in these feature
values could therefore be informative for RIDS so we explored the
use of these features during our logistic regression model develop-
ment. As described later, we performed feature selection on this
set to arrive at the �nal features that were predictive of selection
gestures across individuals.

2.2 Input Prediction During Pointing
There have been several types of input prediction models that have
been developed to understand pointing, the most common being
end-point prediction [36,42,68], hand trajectory prediction [24,46],
and target prediction [14]. Multiple techniques used hand and input
device motion for predicting user-intended targets [11,12,52,71]. In
human-robot collaboration, existing work used trajectory matching
[57] or neural networks [53, 58] to enable proactive robot assistance
whenever a user's hand reached for objects. For 3D environments,
there has been research predicting vehicular touchscreen input [1�
4] and on using long short-term memory (LSTM) models to predict
the probability of selecting candidate objects using hand-reach
features like position and orientation [16]. A heuristic method was
also developed to disambiguate the target object a user intends
to grasp in a cluttered scene using hand action cues [56]. Further,
existing work has also predicted future cursor positions in target-
agnostic ways for mouse input [7, 43, 54], touchscreens [31, 45, 67],
and controller input in VR [28, 29]. Gamage et al. [24] demonstrated
continuous 3D hand trajectory prediction in VR using a kinematics-
based prediction approach.

In addition to hand and input devices, eye tracking has also been
used for prediction. For example, gaze scanpaths have been used to
predict search targets [13, 60, 61] or anticipate user actions that a
robot can perform [34,35,40,62,69]. Researchers have also explored
target forecasting in VR (e.g., [33]), with some research taking
advantage of gaze �xations to anticipate a user's hand movements
while reaching for objects [15, 26].

Although these techniques have been shown to be useful, each
of these projects focused on explicitly predicting the trajectory,
the �nal target, or the �nal hand or cursor position. The present
research focuses on a di�erent problem, namely the implicit detec-
tion of a selection gesture in the current moment using contextual
information that is independent of the sensing of gestures. The
closest research in this space comes from David et al. [19] and
Bednarik et al. [18]. Bednarik et al. used an SVM model based on
hand-crafted features such as eye �xations and saccades. Bednarik
et al's prediction model, however, incorporated gaze data up to
one �xation after a click, which reduced its potential application to
real-time scenarios. David et al. overcame this limitation but still
only used feature-based regression models. In contrast, the present
research used hand motion dynamics for a feature-based model, as
well as a temporal convolutional network that took raw time-series
data as input. It further demonstrated the model's application and
investigated its generalizability to another task scenario.

3 DATA COLLECTION
To train and test the RIDS model, hand motion data was collected
during a freehand pointing and selection task that invoked move-
ment dynamics analogous to a real-world VR task. While existing
work has used controlled, prompt-based pointing tasks [29] for
problems such as end-point prediction, those tasks yielded a nar-
row set of movement dynamics that were not representative of
real-world use, making the problem seem easier than it is. There-
fore, a VR game that contained target size and distance variations,
as well as the unstructured behaviors inherent in real-world use,
was developed.
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3.1 Task Design
The task was a VR version of Yahtzee [66]. The participant's goal
was to compete against the computer to collect as many points as
possible within a speci�c time period (i.e., a three minute block).
Each turn started by rolling �ve dice and the number of turns de-
pended on how fast the participant played the game. A set of actions
was displayed on a panel in front of the participant, indicating the
points that they could collect if they rolled that combination with
their dice (Figure 1). After each roll, the participant could "lock"
any subset of the dice to try to aggregate the dice towards a desired
combination. Possible actions included rolling the dice, "locking" a
die, and selecting a combination to claim points. All actions were
selected using a �nger-thumb pinch gesture.

Figure 1: A competitive VR Dice Game task.

There were 12 trials within each block and each lasted 3 minutes.
Before each block, participants were o�ered a voluntary break from
using the HMD, if desired. After each block, participants completed
subjective surveys (these data were not used for model development
and were not analyzed within this paper). The entire data collection
process lasted approximately one hour.

3.2 Apparatus
The task was built using the Unity game engine. Participants wore
an HTC Vive Pro Eye HMD and used a hand tracker puck [32]
whose raycast was used for pointing. The tracker's position and
orientation provided the 6 DOF hand motion data that was used for
the models. To sense the selection pinch gesture, wristwatch-IMU
driven pinch sensing similar to Wen et al. [65] was used. The pinch
sensing was usable, but not 100% accurate. Although the reported
pinch detection had an F1-score of 83%, this score was arti�cially
high because it did not include false positives from non-gestures,
where in real world cases, they would be detected frequently. This
sensing technique enabled for an investigation of how well the RIDS
model could increase the precision of noisy selection gestures. The
ground-truth of the pinch selection gesture was also collected using
an approach similar to ElectroRing [39], which required the partici-
pant to wear rings on their thumb and the index �nger proximal
phalanges, ensuring near-perfect pinch detection accuracy.

The data from the ground truth rings were not used to drive the
selection gesture because the IMU-driven pinch sensing enabled for
the collection of data about a participant's hand motion dynamics
in the event of false positives and negatives, which the RIDS model
needed to account for.

3.3 Participants
For a safe data collection during the COVID-19 pandemic, seven-
teen right-handed participants were recruited remotely. The de-
vices were mailed to each participant and the study was conducted
through video calls. Participants' ages ranged from 23 to 42 with a
mean age of 34. Participants included 6 females and 11 males. Two
participants reported no experience with VR devices, while the rest
had used VR devices in the past. Informed consent was obtained
and protocols were approved by the Western Institutional Review
Board. Two of the participants' data was removed from the study
due to the data being incomplete.

4 MODELING FRAMEWORK
Simple regression models have lower power, processing, and mem-
ory costs, which are signi�cant factors for wearable devices, how-
ever, a more complex convolutional model may o�er better per-
formance despite higher costs. Therefore, two RIDS models were
investigated within this research, a logistic regression model and
a temporal convolutional network (TCN) model. The two mod-
els shared the same modeling framework, producing probabilistic
outputs which indicated how likely the participant performed a
selection gesture, however they had key di�erences in terms of
model input and architectures.

4.1 Data Processing
The time-series hand motion data was �rst resampled to 60 Hz to
account for irregular data sampling during the real-time recording
(i.e., approximately 90 Hz at the standard Unity frame rate). To
mark the ground truth of a participant's selection gesture, the RIDS
models utilized the onset of the pinch selection signalled by the
ground truth pinch device. For each time frame, a class label, i.e.,
True/Null, was added, according to the pinch detection from the
ground truth device in each time frame.

The time series hand motion data was then divided into two
continuous datasets, with the �rst 70% of the data being used for
training and the remaining 30% of the data being used for held-out
testing within each participant. Five-fold cross validation was used
on the 70% training data.

4.2 Sliding Window
A sliding window approach was used to enable the model to make
an inference at every time frame. The sliding windows had two
parameters, i.e., window size and step size. The window size de�ned
the duration of the predictive window used for the model input,
while the step size determined how many samples to move forward
in time when generating the sliding windows. The models used a
step size of16”67<B (i.e., one data point in a time series with60�I
sampling rate) and the window size was determined through hyper-
parameter tuning on the training set. Hyperparameters are typically
speci�ed heuristically and then tuned for a given machine learning
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problem. Tuning allows one to build a model for each combination
of hyperparameter values and select the best hyperparameter value
based on the one that provides the best performance on the valida-
tion set. Window sizes ranging from 83.33 to 2500.00 milliseconds
were investigated. The class label for each window was determined
by the class of the last sample in the window. All windows with a
pinch gesture detected in the middle of the sample were discarded
to ensure that the model considered only a single instance of a true
pinch in the data. As training samples were generated through a
sliding window over the time series data, cross-validation could not
be performed using a randomized sampling strategy to ensure that
there were no overlapping window segments between the training
and testing sets nor the cross-validation folds. To maintain data
independence, we �rst split the time-series into continuous data
folds (i.e., Fold 1 from time 0 to t, Fold 2 from time t+1 to 2t+1..),and
then applied the sliding window to each fold.

4.3 Model Evaluation Metric
Both the area under the curve of the Receiver Operator Character-
istic (ROC-AUC) and the Precision Recall Curve (PR-AUC) were
used to evaluate the models. ROC-AUC is a more commonly used
metric in evaluating a model's performance, however, compared to
ROC-AUCs assuming a chance rate of 0.5, PR-AUCs are more appro-
priate for unbalanced datasets [20, 63]. The PR-AUC metric is more
sensitive to a large number of null classes that are misclassi�ed as
false positives and the chance rate of PR-AUC is derived from the
percentage of positive examples among all samples, which varies
by individual. To facilitate direct comparisons between participants
and models, a standardized chance rate of 0.13 was created for each
participant by resampling the data to a �xed ratio of 1:7 between
positive and null classes. A much higher chance rate was used
in this research to address the data unbalance problem for model
training. In original data, the ratio between the number of true and
null classes is 1:128.18 (chance rate = 0.0078). This would have had
an impact on our real-time evaluation since the actual ratio would
be heavily skewed in favor of null samples. Essentially, the resam-
pling emphasized the detection of true positives more than true
negatives. Section 6.3 further evaluated the model's performance
using an adjusted metric which considered real-time application
requirements. Although models evaluated on resampled data do not
represent their real-time performance, such data enabled for model
selection by facilitating parameter tuning and model comparisons.
In contrast, the additional parameters used in the adjusted metric
(Section 6.3) made the training space intractable.

5 FEATURE-BASED LOGISTIC REGRESSION
MODEL

To implicitly detect selection gestures, a logistic regression model
was developed using a set of hand motion features (Figure 2a). A
recursive feature addition (RFA) approach, which is commonly used
to select features that have meaningful independent contributions
towards predicting the target value [27, 55], was used as part of the
feature exploration pipeline (Figure 2b).

5.1 Feature Extraction
Based on the pointing model literature [5, 9, 51], 19 features were
extracted from the triaxial hand positions and forward pointing di-
rection vectors which the pointing raycast was also generated with
(Table 1). The features includedhand positionandforward pointing
direction velocity, acceleration, jerk, time since peak velocity, time
since peak acceleration, velocity shape, acceleration shape, absolute
work, andhand position direction changein velocityandjerk.

A Pearson correlation matrix was computed to examine whether
these extracted 19 features were correlated. Given the similarity
amongst some of the features, it was expected that collinearity
would exist within the data, which is a problem for feature se-
lection because highly correlated features could be selected inter-
changeably. As six features includinghand position velocity shape,
forward pointing direction velocity shape, time since peak velocity of
hand position, time since peak velocity of forward pointing direction,
time since peak acceleration of hand position, andtime since peak
acceleration of forward pointing directionwere highly correlated
(correlation coe�cient A¡ 0”58; Figure 2c),velocity shape of hand
positionwas selected to represent this set of correlated features.
Other features were excluded as they were more dependent on
absolute time, making them challenging to generalize across tasks.

5.2 Feature Selection
A recursive feature addition (RFA) approach was used to select fea-
tures from the remaining set of possible features. A sliding window
was used to extract input samples for model development. Because
di�erent window sizes impact results di�erently, this RFA process
was repeated seventeen times for di�erent window sizes ranging
from 83.33 to 2500.00 milliseconds. The selected features reported
below were generated using the window size of the highest PR-AUC
(i.e., window size = 2166.67 milliseconds).

5.2.1 Model Description.Sklearn (version 1.0.1) was used for the
logistic regression models. Due to the imbalanced dataset, the train-
ing parameter,class weight, was set to be inversely proportional
to the number of samples for each class. Thus, a class with fewer
samples was penalized more when it was wrongly classi�ed.

5.2.2 Recursive Feature Addition (RFA).RFA was �rst performed
for each participant (Figure 2b). Features were added using a ran-
domized order to ensure the best features were selected irrespective
of the order they were added. Features were retained if they in-
creased the average PR-AUC across folds; otherwise, they were
dropped. The features were then rank ordered by the percentage of
participants that retained a given feature (Figure 3a). The resulting
feature order served as the input order for the next-step recursive
feature selection using the training data from all participants to
ensure that noise did not eliminate a good feature and to remove
features that were not consistently predictive across participants.
Similarly, features that increased the PR-AUC were retained, oth-
erwise they were dropped (Figure 3b). The �nal set of selected
features are highlighted in Table 1.

While the velocity and acceleration features are self-explanatory,
the other selected features may be less intuitive.Absolute work, for
example, accounts for the assumption that a participant's goal was
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