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Input recognition errors are common in gesture- and touch-based recognition systems, and negatively affect 
user experience and performance. When errors occur, systems are unaware of them, but the user’s gaze 
following an error may provide valuable cues for error detection. A study was conducted using a manual 
serial selection task to investigate whether gaze could be used to discriminate user-initiated selections from 
injected false positive selection errors. Logistic regression models of gaze dynamics could successfully 
identify injected selection errors as early as 50 milliseconds following a selection, with performance peaking 
at 550 milliseconds. A two-phase gaze pattern was observed in which users exhibited high gaze motion 
immediately following errors, and then decreased gaze motion as the error was noticed. Together, these 
results provide the first demonstration that gaze dynamics can be used to detect input recognition errors, 
and open new possibilities for systems that can assist with error recovery. 
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1 INTRODUCTION 
The proliferation of wearable augmented and virtual reality (VR) technologies has resulted in a 
need for natural user input, such as through bare-hand midair gestures. To provide a seamless, 
positive input experience, gesture recognizers must be able to reliably distinguish intentional user 
input (e.g., a user performing a midair selection gesture) from all other user behavior (e.g., a user 
gesturing during conversation). As such, in recent years, the field of human-computer interaction 
has seen increasing interest in developing highly accurate and usable gesture recognizers and 
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interaction techniques. A substantial body of research and development has made considerable 
gains to this end but, unfortunately, input recognition errors are difficult to eliminate completely, 
and when they do occur, they can significantly degrade the usability and experience of a system. 

When an input recognizer fails to accurately discriminate intentional input, two types of 
system errors can occur: false positives, where the system recognizes “input” that the user did not 
intentionally perform; and false negatives, where the system fails to recognize input that was 
intentionally performed by the user. Both types of errors have been shown to degrade user 
experience, but false positive errors are particularly costly [24,28]; users are willing to tolerate 
more time spent correcting false negative errors to avoid false positive errors [24], and false 
positive errors require greater attentional resources to detect than false negative errors [24].  

Given that it is difficult – if not impossible – to create an errorless gesture recognizer and 
given that false positive errors are particularly costly to the user experience, the present work 
investigates whether a system might detect false positive input recognition errors from user eye 
gaze in the moments after they occur, which could then be used to improve the input experience. 
For example, if a recognition system were able to detect when it had made an input recognition 
error (i.e., a false positive), it could use this information to refine and/or personalize its 
recognition model to reduce errors in the future. Even more compelling, if a system could detect 
errors soon enough after they occur, the system could directly assist the user with error recovery 
by communicating what had changed as a result of the unintended input and providing a 
convenient way to reverse the selection [25]. If the error detection was accurate enough, the 
system could even automatically undo the erroneous action. This capability has the potential to 
increase a user’s trust in the input system and create richer human-computer interactions, more 
akin to how humans communicate with one another, where small mistakes or misunderstandings 
are seamlessly resolved in the flow of a conversation. 

Gaze is a compelling modality for the detection of false positive input recognition errors 
because it has been shown to provide cues about fast, real-time changes in users’ cognitive states 
[15,17,20,36], it is tightly coupled to manual selections [5,14,19], and it is sensitive to expectancy 
violations [22,26,31,43]. Gaze behavior has also been shown to vary following false positive errors 
in a variety of interaction tasks, including human robot interaction [2] and automation errors in 
the context of air traffic control [10]. Given the consistent relationship that exists between gaze 
and manual actions during interaction (i.e., gaze motion is correlated to hand motion) [5,14,19], 
it is reasonable that gaze might serve as a proxy for a user’s intention to interact with a system 
[5,14,36] and therefore could be used to discriminate intentional input actions from false positive 
errors. 

To provide a proof-of-concept that gaze dynamics are sensitive to false positive input 
recognition errors, a VR experiment was developed that mimicked common serial selection tasks 
(e.g., photo selection, movie selection). In the task, users searched through an array of tiles to find 
targets, which they were to select using a VR controller (i.e., user-initiated clicks). As they 
searched, the system would occasionally inject false ‘clicks’ to select a non-target item (i.e., 
injected clicks) thereby simulating input recognition errors. By examining gaze dynamics 
following user-initiated clicks versus injected clicks, the results revealed: 

• Users exhibited distinct gaze patterns following user-initiated clicks versus injected 
clicks. 

• Gaze dynamics exhibited a two-phase pattern, with (1) increased gaze motion 
immediately following injected clicks, which reflected attentional orienting to the next 
tile, and (2) decreased gaze motion later in time, which reflected noticing the error. 
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• Machine learned models discriminated user-initiated clicks from injected clicks almost 
immediately (at 50 milliseconds, .63 AUC-ROC) and detection accuracy increased with 
time (at 550 milliseconds, .81 AUC-ROC). 

Together, these findings demonstrate the utility of gaze for false positive error detection and 
suggest that systems might be able to use gaze dynamics to rapidly detect errors. Importantly, 
these results focus on gaze dynamics, such as velocity and angular changes, which increases their 
generalizability to novel tasks and user interface layouts because they are not dependent on gaze-
in-world coordinates. These findings have implications for the design of systems that can detect 
and correct input recognition errors or provide adaptive interfaces to help users recover from 
these errors. This work is future looking and does not pertain to current commercial products. 

2 RELATED WORK 

2.1 Reducing Input Recognition Errors 
To reduce input recognition errors, prior work has explored multimodal interaction techniques, 
which enable users to leverage multiple modalities to complete their task. For example, Yu et al. 
explored coordinating gaze and hand motion to support object manipulation in VR [46], Pfeuffer 
et al. used gaze to select objects for pinching interactions in VR [38], and Kumar and Winograd 
used gaze in conjunction with key presses to control scrolling [27].  

While the above-mentioned works incorporate gaze and an additional modality to explicitly 
control the interface, a similar but distinct vein of research has shown that gaze can be fused with 
other modalities to contextualize input. For example, combining gaze and gestural inputs reduces 
location errors when pointing at objects in VR [45], and differences between gaze position and 
touch position on touchscreens can be used to reduce system uncertainty by expanding a cursor’s 
radius for pointing actions with reduced gaze guidance [42]. Beyond multimodal fusion sensing, 
gaze has also been used to anticipate explicit input, such as key presses on a touchscreen or in 
virtual reality. For example, gaze has been shown to produce consistent patterns leading up to 
and during manual selection [5,14,19], which has enabled user’s interaction intention to be 
identified prior to the onset of input [14].  

Other research has explored how the system can adapt its decision making based on recent 
user behavior as an alternative approach to reduce the costs of input recognition errors. For 
example, bi-level thresholding employs a restrictive threshold for all initial attempts at input to 
reduce false positives; once an initial attempt is made, if it does not surpass the conservative 
threshold, a more relaxed threshold is applied for a short time, allowing the user to generate a 
second attempt at input [24,34]. Although bi-level thresholding might reduce false positives, it 
does so by requiring users to repeat their input gestures, which is an unacceptable requirement 
in most situations.  

These examples provide a snapshot of a large body of work, but they demonstrate approaches 
taken to sensing and thresholding of input recognition models. These methods are essential to 
improve accuracy, but they do not address the errors that are bound to occur even for reliable 
input recognizers. To mediate these negative effects, a system must sense errors, and yet to our 
knowledge there is an impoverished literature on the use of gaze to detect false positive errors. 

2.2 Gaze and User Errors 

Gaze is promising for the detection of input recognition errors because it is known to reflect 
cognitive states [15,17,20,36], it is tightly linked with manual selection [5,14,19], and it is sensitive 
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to expectancy violations [22,26,31,43]. However, to date, much of the research linking gaze to 
errors explores user-generated task errors, such as clicking on the wrong button or failing to 
perceive changes in the visual field. This type of error is distinct from errors due to system 
failures, such as input recognition errors. For example, Ratwani et al. demonstrated that user-
generated task errors are more likely to occur when users fixate less frequently and when they 
fail to fixate on task-relevant information [39]. Furthermore, Bovo et al. found that gaze was 
predictive of user errors during a block assembly task in which users manually assembled blocks 
as their gaze was tracked [8]. Finally, Xu et al. found that when users interacted with a tabletop 
touchscreen, the distance between gaze position and touch position was lower for intentional 
touch events compared to unintentional touch events, suggesting that these errors can be caused 
by a lack of attention to the user interface [44]. Although such studies demonstrated a link 
between eye movements and errors, they focused on user-generated errors, which are likely due 
to inattention, cognitive load, and/or interruptions [3,11,12,30,40]. The cognitive states and gaze 
behaviors that produce user-generated errors are likely different from the gaze behaviors that 
arise from input recognition errors, such as increased attentional resources to detect and correct 
errors [28]. 

2.3 Expectancy Violation and Gaze 

The two prior sections review research on sensing and gaze prior to and during input events. 
Little work has focused on the distinct behavioral signatures succeeding input events. However, 
literature from cognitive science demonstrates that distinct gaze signatures occur following 
surprising, unexpected events. For example, when an incongruent object is placed in an 
environment (e.g., an octopus in a farmyard), people tend to produce more and longer fixations 
on that object compared to congruent objects placed in the environment (e.g., a tractor in a 
farmyard) [22,26,31,43]. Furthermore, after people learn motion sequences of disks, their gaze 
anticipates the next direction of rotation for the disk (expected change), as reflected by increases 
in gaze velocity [33,35]. When a novel motion direction is injected (unexpected change), gaze 
velocity decreases as subjects identify the unexpected change to orient their gaze in the actual 
direction of the disk’s motion. Together, these findings suggest that there are markers of gaze 
that are sensitive to environmental inconsistencies and unexpected changes. Although this work 
does not explore gaze following input events, input recognition errors are indeed unexpected and 
surprising, and as such this literature suggests that we might expect gaze behaviors to be highly 
sensitive to unexpected input recognition errors during interaction.  

2.4 Detecting Input Recognition Errors from Gaze  

To date, there have been some early explorations into the use of EEG-based error potential and 
gaze to detect input recognition error [13,23,29]. Kalaganis et al. used electroencephalography 
(EEG) and gaze to detect errors in an eye-typing interface [23] and found that EEG produced a 
reliable error potential. However, users rarely moved their eyes following an error due to the 
design of the task, and as such the detection of input recognition errors was largely driven by 
EEG. Similarly, Bednarik et al. focused on the use of gaze dynamics to detect user input [5]. 
However, they used fixation behavior preceding and following the input event to detect the input 
event itself, making it difficult to determine if the model could detect errors based on gaze 
behavior following the input error alone. It is important to explore the utility of gaze following 
input recognition errors as systems might not always capture and process gaze due to 
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computational and power constraints. A high efficiency system might only use gaze in the 
moments following an input event to determine whether that event was erroneous.  

A handful of additional studies have provided more compelling evidence for the use of gaze 
for the detection of input recognition errors. For example, Aronson and Admoni (2018) 
demonstrated that gaze is useful for error recognition in human-robot shared manipulation [2]. 
Specifically, they found that when the robot misinterpreted the user’s intent, users tended to look 
in atypical locations, such as the robot’s elbow rather than its end effector. Similarly, Bruder et 
al. (2016) demonstrated that gaze is sensitive to automation errors in the context of air traffic 
control [10]. Here, fixations were more likely to be directed to relevant areas of interest when 
errors were detected. While these works demonstrate the utility of gaze to detect errors, the use 
of interest areas might not be feasible in a real-world system, as any framework that uses fixation-
environment interactions as input to a model requires accurate calibration to track the focus of 
gaze along with computer vision models to determine task-relevancy of the fixated areas. 
Furthermore, an approach that relies on the content of areas-of-interest is less likely to generalize 
beyond a very specific interaction task and it neglects the rich information available in the 
temporal dynamics of gaze.  

Although the literature suggests that gaze differs following errors (broadly defined) compared 
to accurate events, to our knowledge, it has not yet been demonstrated that a model could detect 
input recognition errors based on gaze dynamics alone.  

3 STUDY SYSTEM 

To explore whether gaze could be used detect false positive input recognition errors, a task was 
designed that (1) mimicked common serial selection tasks (e.g., photo selection, movie selection), 
(2) used a click gesture on the VR touchpad that produced plausible sensing errors, and (3) allowed 
for experimental control over extraneous factors surrounding user-initiated versus erroneously 
injected clicks, such as the error rate and timing of errors. Here, participants flipped over tiles 
and selected targets in VR while their eye movements were recorded. As participants flipped tiles, 
the system would occasionally select a non-target (i.e., an injected error). As such, the study 
system resulted in (1) user-initiated clicks that were produced by the user and (2) injected clicks 
that were introduced by the study system. The data were then analyzed to understand gaze 
patterns following injected and user-initiated clicks, and gaze-based models were trained to 
discriminate these events. This paper explores three hypotheses related to gaze and input 
recognition errors: 

H1: Gaze features differ following user-initiated clicks and injected clicks. 
H2: An individual model trained on gaze can discriminate between user-initiated and injected 

clicks for one user. 
H3: A group model trained on gaze can discriminate between user-initiated and injected clicks 

for new users. 

3.1 Methods 

3.1.1 Participants, Apparatus, and Experimental Design 
Thirty-two participants (M = 35 years, 13 females, 19 males) provided consent under a protocol 
approved by the authors’ Institutional Review Board. Participants were screened to have normal 
or corrected-to-normal vision with contact lenses. One participant was excluded because they did 
not pass eye-tracker calibration (see below) and two participants were excluded because they 
received no injected clicks due to a bug in the code, resulting in a sample of 29 participants.  
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Eye and head movement data were collected using an HTC VIVE Pro Eye virtual reality headset 
and a MSI GS66 gaming laptop. The study was conducted remotely due to the COVID-19 
pandemic; headsets and laptops were shipped to each participant’s address. To ensure 
understanding of the task and activities, participants worked with research assistants via video 
conferencing to complete the hardware setup. The study interface consisted of a 3×3 grid of tiles 
(each tile was 0.35x0.35 m). Tiles were arranged such that the centers of neighboring tiles were 
0.6 m part with 0.25 m of empty space between each tile. Participants were seated 3 m from the 
grid of tiles. However, the perceived tile size varied slightly as head motion was not controlled 
and people could lean backwards/forwards or adjust their chair.  

Gaze data was logged at 60 Hz. Before the study, each participant completed a 9-point 
calibration. To ensure successful calibration within the task, participants were asked to fixate on 
a central tile for 60 seconds. If participants fixated on the central tile for at least 75% of the time 
and their gaze velocity was below 30° per second, then they were permitted to complete the study. 
If these criteria were not met, the calibration procedures were repeated. If after several attempts 
a participant’s gaze could not be tracked, they were provided compensation and released from 
the study. As noted above, one participant could not be successfully calibrated. 

The study employed a methodology similar to that used by Lafreniere et al. [28], but it was 
adapted to VR and tracked gaze. The study required participants to uncover and select target 
items using a ray-cast pointer, as demonstrated in Fig. 1 and the video. The pointer was enabled 
when participants rested their thumb on the controller touchpad. On each “page”, six randomly 
selected tiles, located in a 3×3 grid, were enabled (i.e., indicated in yellow); the rest were grayed 
out and were not interactable. Participants searched through these six tiles for a specified number 
of target items (e.g., “Select [2] × [green circles]”). To reveal the contents of a tile, participants 
dwelled on the tile for 1.25 seconds while a circular progress indicator filled. Once the dwell time 
elapsed, the tile flipped over to reveal one of six icons: green circle, red heart, orange triangle, 
yellow star, blue moon, or purple plus sign. If the icon matched the target (e.g., a green circle), 
the participant was asked to select the tile by briefly breaking and then re-engaging contact 
between their thumb and the controller’s touchpad (Fig. 1b, top). This “lift and recontact” gesture 
was chosen to make input errors more plausible, compared to pressing a button where errors 
would seem very implausible if they occurred when the user’s thumb was not touching the 
button. If the tile was not selected within 1 second, the tile closed automatically. If selected, the 
tile would close 0.5 seconds after the click and click feedback would occur (as described below). 
Once the specified number of target items was selected, the next page was displayed. 

 

Fig 1. A: The study interface. Participants were shown tiles and were to locate and select two or three 
hidden targets by dwelling to flip the tiles. The number of remaining targets was indicated at the top of 

the study interface. B: The timelines for tile interactions with user-initiated clicks (i.e., intentional, correct 
clicks on targets) and injected clicks (i.e., injected, erroneous clicks on non-targets). 
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When the participant uncovered a non-target icon, the system occasionally injected a click at 
a randomly selected time between 0.2 seconds and 0.5 seconds after the tile was opened or at the 
moment when the participant’s ray-cast pointer left the tile, whichever occurred first (Fig. 1b, 
bottom). When an error was injected, the non-target item would appear to be selected and the 
click feedback would occur (as described below). To deselect an erroneously selected item, the 
participant needed to first re-open the tile and then click to deselect it. To ensure that the error 
was corrected, the participant was prevented from opening any other tiles until the non-target 
item was deselected. 

When both user-initiated and injected clicks occurred, the border of a selected tile would turn 
blue, the ray-cast pointer would change to yellow and increase in thickness for 100ms, and a click 
sound would occur. To prevent rapid clicking, a 1.0 second lockout was imposed following each 
click. During this time, the ray-cast pointer would temporarily change to grey to communicate 
the lockout state. Visual feedback following user-initiated clicks and injected clicks was identical 
to ensure that there were no visual differences between the two conditions. 

Each participant completed 12 “blocks” of the task described. A block consisted of 60 tile 
openings over several pages. Across all tile openings in a block, ~50% of the tile openings revealed 
target items; the rest revealed a randomly selected non-target item. A total of 9 injected clicks 
were injected for each block (9/60 tile openings; 15% of the time). Before each block, the target 
icon was communicated to the participant via text description (e.g., “The target item for this block 
is the green circle”). The order of the target items was counterbalanced across participants using 
a balanced Latin square. There were two practice blocks preceding the study. Participants 
practiced selected target icons in the first block and practiced deselecting icons when errors were 
injected in the second block. 

3.1.2 Pre-Processing and Feature Extraction. 
The 3D gaze vectors were transformed from the eye-in-head to eye-in-world direction using head 
orientation [10]. Next, the angular displacement between gaze samples, represented as 
normalized vectors 𝑢 and 𝑣, 𝜃 = 2 · 𝑎𝑡𝑎𝑛2(∥𝑢 − 𝑣 ∥, ∥𝑢 + 𝑣 ∥), were computed. Gaze velocity was 
computed as 𝜃 divided by the change in time between gaze samples.  

The gaze data was then filtered to remove noise and unwanted segments before event detection 
and feature extraction. Data from the practice trials was discarded prior to analysis, and all gaze 
samples where the gaze velocity exceeded 800° per second were removed because they 
represented unfeasibly fast eye movements [16]. Any missing values were filled in using linear 
interpolation. Finally, a median filter with a window size of seven samples was applied to the gaze 
velocity signal to smooth the signal and account for noise prior to event detection [37]. 

Saccade detection was performed using I-VT on the filtered gaze velocities by identifying 
consecutive samples that exceeded 70° per second [41]. Minimum and maximum saccade 
durations of 17 to 200 milliseconds were enforced. Fixation detection was performed using I-DT 
by computing dispersion over time windows as the largest angular displacement from the 
centroid of gaze samples [41]. Time windows where dispersion did not exceed 1° were marked as 
fixations. Minimum and maximum fixation durations of 50 to 1500 milliseconds were enforced.  

Ten features were chosen based on their predominance in past research. These features 
included fixation features (fixation duration, the angular displacement between fixation 
centroids), saccade features (the angular displacement between the current and previous saccade 
centroids, the angular displacement between the current and previous saccade landing points, 
saccade amplitude, saccade duration), and continuous features (fixation probability, saccade 
probability, gaze velocity, dispersion). The fixation and saccade features were used, as they are 
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affected by incongruent scene information [22,26,31,43]. The continuous features were used, as 
they are sensitive to the onset of user input [14] and thus might be sensitive to the offset of input. 
The dispersion algorithm used the gaze samples corresponding to a lagging 1000 milliseconds to 
compute the dispersion of samples [36]. To represent these features as a continuous time-series, 
empty values between each event were linearly interpolated. Fixation probability and saccade 
probability were not z-scored because they were categorical; the remaining features were z-
scored within participant.  

3.2 Model: Gaze-based Input Recognition Error Detection 

To determine whether gaze could be used to classify user-initiated versus injected clicks, logistic 
regression models were trained. To explore how quickly a system might detect an injected click, 
models were trained with varying time durations following a selection event, which is referred 
to as the lens approach. Here, gaze data from 50 to 600 milliseconds following each user-initiated 
or injected click was grouped into twelve 50 millisecond bins. Six hundred milliseconds was 
chosen as the maximum duration as it was the average amount of time that it took to select a new 
tile following a user-initiated click. Selection events that occurred at the end of a page were 
excluded because they were followed by additional graphical visualizations (tile shuffling) which 
may have elicited different gaze behaviors. Finally, user errors were quite rare (see Supplement); 
any user errors were excluded from the models.  

Each time sample became a beta parameter in the model. For the 50 milliseconds lens size, 
there were three beta parameters for each feature since there were three time samples that 
occurred in the 50 milliseconds following error injection. The class weights were set to be 
inversely proportional to the number of samples for each class. 

The first set of models were trained and tested for individual participants, which allowed the 
models to represent individual differences in gaze [1,21]. Individual models were trained on a 
random 80% of the data and tested on the remaining 20% of the data. A random 80% of the data 
was used because each selection was an independent event. 

A second set of models (group models) were used to determine whether gaze behaviors that 
differentiate user-initiated clicks from injected clicks would be generalizable to new participants. 
Group models were trained using leave-one-participant-out cross-validation, i.e., models were 
trained on N-1 datasets and tested on the left-out dataset.  

Performance was evaluated using the area under the receiver operator characteristic curve 
(AUC-ROC), which ranges from 0 to 1 with an AUROC of .5 indicates baseline classification by 
guessing [9]. The AUC-ROC values at a given lens size were compared to chance (.5) using a one-
sample t-test. Comparisons of two AUC-ROC values for a given lens size were conducted using 
paired-samples t-tests. The false discovery rate (FDR) correction was used to control for multiple 
comparisons across the lens sizes for each feature [6].  

4 RESULTS 

4.1 Gaze Signatures After User-initiated versus Injected Clicks 
The first analysis examined whether gaze differed following user-initiated and injected clicks 
using a statistical analysis. Here, the average value of each feature at each time point for each 
participant was computed for user-initiated versus injected clicks. These were then compared 
using a paired t-test to determine which time points were statistically different. This resulted in 
36 paired t-tests (one for each time point between 17 to 600 milliseconds); the aforementioned 
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FDR correction was applied to control for multiple comparisons for each feature [6]. Significant 
differences were found for all features of the time-series data following user-initiated and injected 
clicks (Fig. 2).  

 

Fig 2. Time-series of gaze following the user-initiated clicks (blue) and injected clicks (red). Brackets and 
asterisks correspond to time points where the two conditions differed significantly. Error bands 

correspond to one standard error of the mean. 

Visualization of the data suggests that there were two processes occurring, each at a different 
period of time. First, following injected clicks, participants’ gaze was more likely to be in motion 
between 0 and 250 milliseconds, as evidenced by increased gaze velocities, dispersions, saccade 
probability, and angular displacement between fixation centroids, as well as decreased fixation 
probability. Given that these effects occur at the onset of the injected clicks, they suggest that 
these oculomotor behaviors were in progress at the moment of selection and that the participant 
was not attending to any particular object. A second pattern can also be observed between 300 
and 450 milliseconds, where the pattern reverses. This second phase likely captured gaze 
behaviors related to noticing the error and recognizing the need to reorient attention to the target 
to correct the error. Together, these findings support the hypothesis that there are patterns of 
gaze that differ following user-initiated versus injected clicks (H1). For an analysis of user errors, 
see the Supplement, which depicts gaze following user-initiated clicks, injected clicks, and user 
errors (specifically, user-initiated non-target clicks). 

4.2 Discriminating Between User-Initiated Clicks and Injected Clicks using an 
Individual Model  

To test H2, models were trained and tested on the same participant to understand how well a 
personalized model might perform. One set of models used all ten features (Fig. 3a; Table 1) and 
another set used the ten features individually (Fig. 3b; Table 1). One sample t-tests indicated that 
individual models trained on all the features could reliably discriminate user-initiated from 
injected clicks for all lens sizes (p < .05; Fig. 3a). Models trained on individual features could 
discriminate user-initiated clicks from injected clicks well above chance for all lens sizes for each 
feature, with three exceptions: saccade amplitudes at 600 milliseconds and saccade durations at 
150 and 600 milliseconds (Fig. 3; p > .05). Despite these exceptions, the individual feature results 
suggest that all gaze features were sensitive to error injections. Together, the results support the 
hypothesis that individual models can discriminate between user-initiated and injected clicks 
within milliseconds of an event (H2).  
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Table 1. The mean AUC-ROC for the individual and group models are depicted at 50ms and the lens size 
in which the AUC-ROCs were best. 

 
Individual Models Group Models 

Model Name AUC-ROC,  
50ms 

Best AUC-ROC, 
Lens Size 

AUC-ROC, 
50ms 

Best AUC-ROC, 
Lens Size 

All Features .63 .81, 550ms .63 .79, 450ms 

Fixation Duration .55 .66, 450ms .54 .63, 500ms 

Angular Displacement Between Fixation Centroids .58 .72, 500ms .55 .68, 400ms 

Angular Displacement Between Saccade Centroids .56 .64, 550ms .57 .61, 450ms 

Angular Displacement Between Saccade Landing Points .58 .68, 550ms .58 .64, 450ms 

Saccade Amplitude .54 .65, 550ms .57 .61, 450ms 

Saccade Duration .56 .60, 500ms .56 .59, 550ms 

Saccade Probability .53 .73, 350ms .52 .74, 550ms 

Fixation Probability .54 .72, 400ms .56 .72, 450ms 

Gaze Velocity .54 .76, 400ms .56 .76, 550ms 

Dispersion .58 .77, 500ms .57 .74, 600ms 

 

Fig 3. AUC-ROC scores from the individual models. Panel a depicts the mean AUC-ROC for a model 
trained on all ten features. Panel b depicts the mean AUC-ROC for models trained on each individual 

feature. Error bars depict 95% confidence intervals. 

4.3 Discriminating Between User-Initiated Clicks and Injected Clicks using a Group 
Model 

The individual models provided a compelling demonstration that gaze can be used to detect 
errors. However, if these individual models were used in practice, a system would require 
substantial ground truth data from each user before the model could be used. Alternatively, 
systems might deploy a group model if it functions well for new users, which would eliminate 
the need for users to undergo training before it could be used. To explore whether a group model 
could detect errors for new users, models were trained on N-1 participants and then tested on the 
held-out participant (Fig. 4; Table 1). The models that used all the features and each feature 
individually performed above chance for all lens sizes (p < .05). Together, these results suggest 
that a group model can detect errors for new users (H3).  
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Fig 4. AUC-ROC scores from the group model. Panel A depicts the mean AUC-ROC for a model trained 
on all features. Panel B depicts the mean AUC-ROC for models trained on each individual feature. Error 

bars depict 95% confidence intervals. 

4.3.1 Model Resiliency to Other Tasks and Interfaces. 
The results provide a compelling demonstration of the use of gaze to detect input recognition 
errors. However, this was constrained to a single task, which raises questions about 
generalizability. To address this potential limitation, it was possible to use the existing study 
system to explore the extensibility of the present findings. Specifically, the model was trained 
only on instances that were followed by click feedback; model training excluded user-initiated 
clicks for the last target on a page because the post-selection user interface behaved differently — 
rather than providing click feedback, the tiles immediately reshuffled to generate the layout for 
the next page. In other words, the visuals of the user interface substantially differed for these 
terminal clicks; furthermore, when participants completed the final target selection, they were 
likely to move their eyes differently compared to a case where they were continuing their serial 
search for targets on the page.  

As such, to test the generalizability of the model to new user interfaces, the trained group 
model was tested on these held-out terminal user-initiated clicks to determine how well the model 
performed even if the face of novel interface behavior. Overall, the model's performance when 
discriminating terminal user-initiated clicks from injected clicks was like that of the serial user-
initiated clicks and injected clicks; there was no difference in the paired t-tests for any of the lens 
sizes (p > .05). This suggests that the model could discriminate between injected and user-initiated 
clicks regardless of whether the interface or task changed.  

4.3.2 Influence of Time-based Versus Adaptive Error Injection. 
After injected clicks, participants exhibited more eye movement compared to user-initiated clicks. 
However, it is possible that this was an artifact of our study design, which randomly injected 
clicks within 200 and 500 milliseconds of tile opening (“time-based injection”) or whenever the 
participant’s cursor left the bounds of the tile (“adaptive injection”). Given that gaze couples with 
hand movements [3,9,13,21], it is possible that this latter criterion of adaptive injection could have 
introduced a confound because injected clicks were more likely to co-occur when the cursor left 
the tile.  

To address this concern, a follow-up study was run where clicks were injected based upon 
time alone (200 to 500 ms after a tile opened) with a sample of 10 participants from the first study 
(M = 35 years, 5 females, 5 males, 10 right-handed). By using a subset of the original participants, 
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the follow-up could directly test whether gaze changed as a function of how errors were injected 
by comparing session performance for each individual.  

Two group models were trained on all the features, one using the matched study participants 
from the first study and a second using the participants from the follow-up study using the same 
cross-validation procedure. Overall, paired t-tests showed no significant differences for the 
between the first and second study AUC-ROC values at all lens sizes (p > 0.05). This suggests that 
our results were not simply due to the mechanism by which errors were injected.  

4.3.3 Model Performance of Individual Versus Group Models. 
We next compared the group to the individual models to determine whether a group model could 
be used in a system that had not yet been personalized. Overall, there were no significant 
differences in the all-feature model performance for the group and individual models (p > .05) 
(Fig. 5a). This is somewhat of a surprising outcome, given individual differences in eye behavior 
[1,21], and could be explained by differences in the amount of training data. This was investigated 
further by computing learning curves for the group (Fig. 5b) and individual models (Fig. 5c). 
Inspection of the learning curves suggested that the individual models would likely perform better 
with more training data. 

 

Fig. 5. Group and individual model comparisons. Panel a: The red and blue lines correspond to the group 
and individual model AUC-ROC at each lens size, respectively. Error bars correspond to 95% confidence 
intervals. The group (b) and individual (c) model learning curves for the smallest (3) and largest lens size 

(36). The red and blue lines correspond to the training and cross-validation scores, respectively. Error 
bands for (b) and (c) reflect one standard deviation. 

5 DISCUSSION 

Prior work has explored how gaze can be used to control or contextualize user input (see Related 
Work). However, to date, none have explored whether gaze following input events could be used 
to distinguish input recognition errors from user-initiated selections. If an input recognition 
system were able to rapidly detect false positive input recognition errors, it could then employ 
mediation techniques to clarify the user’s intentions and assist with error recovery or use this 
signal to improve and personalize the input recognizer to avoid future errors. To enable future 
systems with this capability, the present work explored whether gaze dynamics following click 
events could be used to identify input recognition errors.  

The results demonstrated that gaze dynamics can be used to detect false positive input 
recognition errors. A logistic regression model was able to discriminate injected clicks from user-
initiated clicks as early as 50 milliseconds after their occurrence (.63 AUC-ROC) and achieved 
peak performance at 550 milliseconds following the input event (.81 AUC-ROC), demonstrating 
how quickly a system might be able to detect these input recognition errors with reasonable 



Gaze as an Indicator of Input Recognition Errors  142:13 

PACM on Human-Computer Interaction, Vol. 6, No. ETRA, Article 142, Publication date: May 2022. 

confidence. Importantly, models trained on numerous features performed best, but models trained 
on gaze velocity alone performed nearly as well. Gaze velocity is a simple feature that represents 
changes in the gaze vector from the preceding time point to the current one, and as such it does 
not require substantial feature engineering to be used in real-time systems. Furthermore, given 
that gaze velocity is independent of the spatial coordinates of gaze, it is expected to be useful even 
when user interfaces vary in their layout and design. In other words, it is a promising feature for 
the generalizability of the proposed model, which is discussed in more depth below.  

An important finding for the applicability of our work to real systems is that a group model 
achieved comparable performance to individual models. The high performance of the group 
models demonstrates that personalization to an individual user is not required to provide this 
capability “out of the box”. Although it is likely that models would improve with personalization, 
the results suggest that a group model can identify errors well above chance.  

We also discovered a two-phase gaze pattern following the click event (Fig. 2). Following 
injected clicks, there was increased eye motion between 0 and 250 milliseconds. At the moment 
of an injected click, participants are likely already orienting their attention to the next tile because 
they do not intend to select the non-target tile, which manifests in high gaze velocity and a greater 
likelihood of saccades. This finding is consistent with prior work, which has found that eye 
movements are used for motor planning [5,14,19]. Second, between 300 and 450 milliseconds, 
there was a decrease in gaze motion following an injected click. This is the timeframe in which 
participants have likely detected the click feedback. In other words, during this time, they have 
abandoned their current plan and begun to reorient their gaze back to the erroneously selected 
object to correct it. From the present study, it is unclear whether this second phase occurs only 
when users correct input errors in a user interface. Although it would require future studies to 
determine whether the second phase occurs irrespective of the correctability of the error, prior 
research on expectancy violation suggests that it might [22,26,31,43]. For example, after people 
learn motion sequences, their gaze velocity increases as they anticipate what direction a disk will 
move next; however, when a novel, unexpected motion direction is injected, gaze velocity 
decreases as subjects identify the change to orient their gaze in the actual direction of the disk’s 
motion [26,28]. The two-phase pattern is likely something that models could learn to detect to 
improve user experience. For instance, future modeling work might develop models that could 
represent each of these two phases separately (e.g., as states), which would allow systems to 
understand whether users have noticed errors once selection feedback is given. 

Together, these results demonstrate that input systems could deploy models based upon gaze 
dynamics to detect input recognition errors and adapt the input detection system to improve user 
experience. This model expands prior work that uses interactions between gaze and areas of 
interest to predict errors [2,10] by instead using gaze dynamics, which are more likely to 
generalize to new tasks and contexts. More work is needed to explore future directions, but the 
results provide a compelling demonstration for future hardening of gaze-based input recognition 
error detectors. 

5.1 Design Implications for Input Recognizer Systems 

The ability to detect recognizer errors rapidly opens several new possibilities for the design of 
input systems, including the development of improved input recognizers and the design of error 
mediation techniques.  

Detection of input recognition errors can provide valuable information for refining and 
personalizing an input recognition model, which would improve its accuracy in the future. For 
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example, gaze-based detection of false positive errors could be combined with detection of false 
negative errors using a heuristic method similar to that used in the bi-level thresholding work 
[24,34] to give the recognizer system a comprehensive “error awareness”. When an error is 
detected, the system might capture the raw data around the error event (e.g., recorded video or 
other inputs used by the recognizer) to improve and/or personalize its input recognition model. 
These data can be computationally expensive to capture and store on an ongoing basis, and the 
labeling of ground truth can be complex. The model framework introduced here could be used to 
capture false positive events and label them, decreasing the computational and storage load on 
the system. 

Second, the ability to detect false positive errors opens the possibility of interactive error 
mediation techniques that could be deployed to assist the user with error recovery, or otherwise 
reduce the impact of these errors on user experience. While there is precedent for mediation 
techniques that interactively disambiguate a user’s intentions before the system finalizes an 
action (e.g., through prompts or n-best lists) [18,32], here, the detection of errors occurs after the 
input event. In other words, the model proposed here is driven by the system detecting its error 
from the user’s gaze, which unlocks a distinct and novel space for design. Drawing on prior 
literature, there are several ways in which error mediation techniques could assist the user. For 
example, the display might highlight the change to application state that has resulted from a 
potential false positive error, a method similar to Phosphor [4]. Critical to successful error 
communication is to draw the user’s attention to the spatial location where change has occurred, 
perhaps by displaying a summary of the change(s), as in work on mnemonic rendering [7]. In 
addition to helping users notice the error, the system could assist by providing a convenient way 
to ‘undo’ the changes. An important consideration when designing these techniques is that the 
error detection model may itself produce errors, which could lead the system to assist with 
“recovering” from intentional selections. To this end, it will be critical for future work to test 
whether the recognition accuracy of the present models is acceptable to users in real interaction 
systems and how model accuracy interacts with various types of error mediation (e.g., auto-undo 
versus confirmation). Investigating the design space for potential error mediation techniques and 
studying the effects of such techniques on user trust, experience, and other factors are all 
interesting areas for future research that are opened by the findings presented here. 

5.2 Generalizability  

The intent of this work was to provide a proof-of-concept that gaze could be used to detect input 
recognition errors, but future work must explore how well these outcomes generalize to other 
interfaces, tasks, and input recognizers. The tile task used in the present work was designed to 
represent a broad set of search-and-select interactions. In the tile task, a user must sequentially 
inspect several items (i.e., performing a serial targeting task) and then provide distinct input to 
select desired targets; when errors occurred, they had to correct them. Given the design of the 
task and the use of target-agnostic gaze features (e.g., gaze velocity), the results observed here 
would likely be similar in many other serial targeting tasks. In other words, the fundamental 
demands of this task are representative of other point-and-select tasks in human-computer 
interaction. 

Second, the present work opted to use gaze dynamics as input features rather than spatial 
coordinates or gaze heatmaps. Dynamic features, such as fixation duration, gaze velocity, and 
angular displacements capture relative changes in gaze over time and are thus independent of the 
specific spatial coordinates of gaze. As such, these features are less dependent on the spatial 
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layout of the user interface and any directional components of scanning. Future work might 
deploy both, exploring both spatial features of the interface (e.g., target size, target density) and 
dynamic gaze features, particularly when a task-specific model is desirable.  

Finally, there is the question of whether the results will generalize across different recognition-
based input techniques. In the present study, clicks were injected rather than using an input 
recognizer because this allowed for control over extraneous factors surrounding user-initiated 
clicks versus erroneously injected clicks. However, it is likely that any given recognizer would 
have certain contexts where errors would be more likely to occur (e.g., an IMU-based recognizer 
for midair gestures would be more susceptible to errors when the user is moving their hands 
quickly). This is relevant to our error detection paradigm because gaze signatures that 
discriminate true selections from input recognition errors are likely to vary based on when in an 
action the error occurred. Furthermore, the results could change depending on the type of 
interaction technique (e.g., whether one uses a thumb pad versus point-and-click interactions). 
Overall, our analyses demonstrated that there was discriminating signal at each time point, from 
the click onset, which suggests that this modeling framework could be successfully applied to 
recognizers with errors at different timings. Ultimately, the modeling demonstrated here was a 
proof-of-concept that can be applied to novel interfaces, tasks, and recognizers. The present 
approach will function best when it is tuned to a specific interface and input recognizer. 

5.3 User Errors Versus Input Recognition Errors 

As reviewed in the Related Work section, user errors and input recognition errors occur for 
different reasons. Two interesting questions, then, are (1) whether the gaze dynamics following 
user-initiated non-target clicks are different than injected clicks, and (2) how a system might 
respond to these two types of errors. In the Supplement, we demonstrate a clear distinction in 
gaze behavior between user-initiated non-target clicks and injected clicks. Although this 
exploration was not the intention of our study, it suggests that it is possible for a system to 
discriminate between these two error types, which introduces a novel research space that could 
explore how a system might respond to these errors. We leave this research space open for future 
work on gaze and input error mediation.  

5.4 Limitations 

There are several limitations that should be addressed in future work. First, the injected click 
errors used might have affected users’ reaction to those errors. For example, because errors were 
only injected to non-target items, the injected clicks may have been more predictable than they 
would be in real interaction contexts. In fact, if errors were more predictable, the observed effects 
are likely weaker than would be expected in real interaction contexts. As reviewed in the Related 
Works, people produce distinct gaze patterns to unexpected events. As such, if input recognition 
errors are less predictable in real interaction contexts, then one might expect a stronger distinct 
gaze reaction to these errors. This is of course speculation; it is necessary for future work to 
explicitly evaluate this.  

A second limitation of the present work is a focus on only one type of error: false positive 
input recognition errors. There are many other types of errors, including finger slippage in which 
a target item is selected before an intentional act, which could surprise a user and cause atypical 
gaze behavior even though the user might not in fact want to correct the “error”. Furthermore, 
future work may wish to focus on false negative input recognition errors, as it is unknown 
whether they will produce the same gaze dynamics as false positive input recognition errors.  
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Finally, this research used a very simple logistic regression model. This enabled easy inspection 
and interpretation of the gaze features, but it is possible that there are important patterns in the 
time-series of gaze that it was not able to represent. For example, perhaps the transition from 
high velocity to a sharp directional change in gaze is a unique signature of noticing an error. The 
current architecture is limited in its ability to represent relative changes in gaze behavior. Future 
work on gaze for error detection should examine various time-series and latent state models (e.g., 
LSTM) and the performance gains that can be made with these models.  

6 CONCLUSION 

The present research demonstrates that input recognition errors can be detected moments after 
they occur using gaze dynamics alone. This work introduces an entirely new approach to solving 
the challenge of imperfect input recognizers. That is, rather than improving the sensing model, 
the present work provides a promising proof-of-concept that systems could leverage gaze 
dynamics immediately following an input event to detect errors and provide effortless error 
mediation techniques. This approach has the potential to transform interaction through more 
intelligent recognition systems that can operate before, during, and following input events to 
provide the best possible input experience.  
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