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ABSTRACT 
This paper presents a new technique to predict the ray pointer 
landing position for selection movements in virtual reality 
(VR) environments. The technique adapts and extends a 
prior 2D kinematic template matching method to VR envi-
ronments where ray pointers are used for selection. It builds 
on the insight that the kinematics of a controller and Head-
Mounted Display (HMD) can be used to predict the ray’s fi-
nal landing position and angle. An initial study provides ev-
idence that the motion of the head is a key input channel for 
improving prediction models. A second study validates this 
technique across a continuous range of distances, angles, and 
target sizes. On average, the technique’s predictions were 
within 7.3° of the true landing position when 50% of the way 
through the movement and within 3.4° when 90%. Further-
more, compared to a direct extension of Kinematic Template 
Matching, which only uses controller movement, this head-
coupled approach increases prediction accuracy by a factor 
of 1.8x when 40% of the way through the movement.  
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INTRODUCTION 
In the last several years, there has been a significant increase 
in the popularity of virtual reality (VR) technologies. Despite 
decades of research in the HCI community, many interaction 
challenges are still prevalent, and interface paradigms have 
yet to converge. Specifically, target selection via pointing, 
one of the core tasks in VR systems [35], remains 
problematic due to the spatial nature of VR environments.  

One of the most common selection techniques to use in VR 
is a ray pointer, which acts like a laser emanating from a 6-
DOF controller, and can be used to acquire distant targets. 
Ray pointers, however, are error prone as when targets are 

far away, they require high angular precision for successful 
acquisition. Numerous techniques have been developed to 
facilitate ray pointing, but they often introduce additional 
steps [22, 29] or input mechanisms [7]. To better leverage 
pointing facilitation techniques, it would be advantageous if 
a system could predict the target or region that a user intends 
to point towards, while the movement is still in progress.  

In 2D environments, many endpoint predictive models have 
been developed that could be used to facilitate pointing tasks 
[33, 45, 53, 63]. With such models, the cursor trajectory is 
continuously analyzed as it moves towards an intended 
target, and the model predicts where the final endpoint of the 
trajectory will be. One recent, promising technique is 
Kinematic Template Matching (KTM), which matches 
cursor velocity profiles to a library of templates from known 
movements to predict the trajectory’s endpoint [45]. Despite 
the promise of such techniques, little work has applied 
endpoint prediction to VR environments. 

This paper describes a novel endpoint prediction model, 
Head-Coupled Kinematic Template Matching (HC-KTM), 
for ray pointing in VR (Figure 1). It builds upon 2D 
Kinematic Template Matching, with important adaptations 
and enhancements. Most notably, the prior model only 
considers the cursor trajectory to build and match template 
gestures. Our key insight is to integrate head movement 
trajectories into the templates – an information channel 
inherently available from the Head-Mounted Displays 
(HMD) of VR platforms. This allows predictions to be based 
on where users look, along with the pointer trajectory.  

Two data collection experiments were performed to validate  

Figure 1. During a ray pointer target acquisition movement, the 
velocity of both the controller and the head mounted display 
are tracked (a, b). These velocity profiles are matched to a 

library of templates to predict the final ray landing position (c). 
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the efficacy of this new model. The first experiment analyzed 
acquisition behaviors to build and tune the model under 
controlled conditions. It revealed that during the first half of 
a movement, head trajectory data is more indicative of the 
final landing position than controller trajectory data. The 
second experiment validates the HC-KTM model by 
capturing target acquisition data across a continuous range of 
angles and target sizes. The prediction model was then 
applied to the captured data, and its accuracy analyzed. 
Results show that our new model’s predictions are within 
7.3° of the true landing position, 50% of the way through the 
movement, and within 3.4° at 90%. Furthermore, compared 
to a direct extension of KTM, the head-coupled approach 
increases prediction accuracy by a factor of 1.8x at 40% of 
the way through the movement.  

After describing the results of our studies, we discuss two 
potential ways in which the predictive model could 
potentially be utilized to improve VR user experiences. First, 
pointing facilitation techniques could be enhanced by biasing 
towards the model’s predicted region. Second, we discuss 
broader applications, beyond pointing facilitation, such as 
haptic retargeting [12], foveated rendering [2], and latency 
reduction techniques [61], which could all be improved if a 
user's intentions could be inferred prior to the associated 
actions occurring. 

The key contributions of this work are (1) the adaptation of 
KTM endpoint prediction to VR environments, (2) a head-
coupled kinematic template matching (HC-KTM) algorithm 
that integrates velocity data from both the controller and the 
head, and (3) empirical data showing that this new technique 
can predict ray pointer landing positions and outperform 
more direct adaptations of prior approaches. 

RELATED WORK  
This work builds upon prior research in VR selection, distant 
pointing on large displays, cursor endpoint prediction, and 
gaze-based user interfaces. 

VR Selection Techniques 
Numerous techniques have been developed to facilitate 
pointing in 3D environments (for a comprehensive survey, 
see the work of Argelaguet & Andujar [3]). Early research 
identified two main classes of selection techniques - ray 
pointing or ray casting [17, 34, 47] and 3D cursors (i.e., 
virtual hand) [18, 24, 35, 48]. Facilitation techniques have 
been developed for 3D cursors [48, 57], but ray-based 
approaches have proved to be more efficient [22].  

With ray pointing, a cursor emanates like a laser pointer from 
the hand or a 6-DOF handheld controller. Despite its 
prominence in current VR platforms, it is difficult to select 
small and distant targets due to the angular accuracy needed. 
One general solution is to use a conic area for the ray [18, 
35], however, this can require disambiguation techniques if 
multiple targets are in the selection region. 

The use of predictive heuristics can enable one to 
automatically differentiate between multiple selected targets. 

This can be done by highlighting the closest target [34], 
having the last intersected object persist until a new object is 
intersected [56], or by using more weighting schemes that 
continuously update as the cursor moves [14, 22, 55]. 
Another method to disambiguate between targets is to 
provide an explicit mechanism for users to indicate a target 
of interest. Techniques such as using a secondary radial 
menu [22, 48], supporting progressive refinement using a 
series of quad-menus [30], or explicitly controlling a marker 
along the depth of the ray [6, 22, 51], have all been proposed. 

Although these techniques improve the final selection 
process, the literature is lacking in ways that can predict the 
landing position of a ray pointer while moving. 

Distant Pointing on Large Displays 
Ray (or virtual laser) pointing is also a common selection 
metaphor to use when interacting at a distance with large 
displays [25, 28, 40]. To address the performance detriments 
associated with the required angular accuracy, researchers 
have explored techniques to increase precision, such as 
adapting the CD ratio based on cursor velocity [28].  

Another approach leverages a technique where ray pointing 
is first used for coarse positioning and then for precise 
positioning [59]. Nancel et al. thoroughly explore the design 
space of such “dual-precision” techniques [41, 42]. Most 
related to our work, they propose a “dual-channel” technique 
where head orientation provides coarse control of the cursor 
and a handheld device handles precise positioning [42]. We 
extend this approach by instead leveraging the head-
movement to inform a predictive model of the ray pointer 
landing position while the controller is still in motion. 

Cursor Endpoint Prediction 
In desktop configurations, significant efforts have been made 
to develop endpoint prediction techniques while the mouse 
is still in motion. Three main approaches have been proposed 
in the literature: regression-based extrapolation, target 
classification, and kinematic template matching. 

With regression-based extrapolation, existing models of 
cursor movement behaviors are used to predict the location 
of a distant target based on partial movements [3, 25]. Most 
successful is Lank et al.’s motion kinematics approach [33], 
which they subsequently improved to take into account the 
stability of the prediction [53].  

An alternative approach is to use target classification, which 
integrates knowledge about targets in the environment to 
identify the most probable candidate target [39]. Recent 
work has shown that Neural Networks and Kalman filters 
can be used to predict user intent based on the kinematics of 
the cursor [5, 8]. Ziebart et al. assigned probabilities to 
targets, using inverse optimal control and Bayes’ rule [63]. 
While such techniques are promising, they are complex and 
require knowledge of the target locations. 

A final approach is Kinematic Template Matching [45]. With 
this technique, the velocity profile of a partial pointing 



 

movement is compared to a library of known “template” 
movements to predict the final cursor location. Although 
untested, the authors suggest that this prediction could then 
be combined with target selection techniques such as target 
expansion [20] or gravity wells [9]. Template matching 
offers a number of advantages over the other techniques: it is 
target-agnostic, user-adaptable, and easy to implement [45]. 
As such, this work builds upon this approach and will be 
reviewed later in more detail. 

Outside the domain of 2D cursors, target prediction for 
touch-based interfaces has been explored, often to reduce 
perceived latency [11, 43, 44]. For example, Xia et al. 
leveraged hover information to predict the time and location 
of a touch just before it occurred [61]. Ahmad et al. applied 
similar predictive models for in-car, mid-air selection [1]. In 
VR, LaViola explored filtering techniques for making 
predictions to reduce the perceived latency in VR 
environments [34]. These techniques have also been used to 
predict saccade landing positions to reduce the latency of 
foveated rendering in head-mounted displays [2]. 

Despite the promise of these techniques, we are unaware of 
work that applies prediction models within the realm of VR 
ray pointing to predict selection intent.  

Gaze and Head Input 
Gaze is an established method to provide input to interactive 
systems, in particular for contexts which require hands-free 
operations [15]. Gaze can also be used as an implicit channel 
to detect users’ intent [23]. For example, the MAGIC 
technique leverages gaze information to warp the cursor to a 
general area of interest [16, 62]. Similar efforts have also 
been made in 3D environments, such as combining gaze with 
dwell or pinch [13, 46, 58]. However, gaze can suffer from 
the Midas touch problem, and can be slower than a hand-
controlled ray pointer [13].  

Cassallas et al. demonstrated that by coupling head and hand 
movement features, one can predict intended moving targets 
[10]. Kyto et al. showed that gaze and head pointing could 
be combined with refinement to support the precise selection 
of 2D targets in AR [31]. In automotive user interfaces, 
Roider and Gross showed that gaze data could be used to 
improve the accuracy of pointing gestures [52]. In VR, 
Cheng et al. presented a technique for predicting user 
intention by analyzing gaze and hand movement, so that the 
hand can be redirected towards a physical proxy [12]. 

Such work demonstrates the benefit of coupling hand-
controlled pointing with gaze or head movements. Our goal 
is to build upon such work by using head movement data to 
predict the landing position of a ray pointer movement.  

REVIEW OF 2D KINEMATIC TEMPLATE MATCHING  
The technique proposed in this paper is inspired by Pasqual 
and Wobbrock’s Kinematic Template Matching (KTM) 
technique, one of the more accurate endpoint prediction 
techniques in the literature [45]. It also has the practical 
advantages of being both target-agnostic and simple to 

implement. The concept behind KTM is to utilize a cursor’s 
velocity profile as a 2D stroke gesture, allowing it to be 
recognized using a template matching algorithm (Figure 2). 
The approach uses a four-step process: building a template 
library, preprocessing new candidate pointing movements, 
matching the template, and estimating the cursor endpoint. 

In the first step, a library of templates is generated using a 
collection of previous pointing movements. Each template 
consists of (i) a cursor velocity curve as it progresses towards 
the target and (ii) the total distance travelled. The velocity 
profiles are truncated to remove overshoots and resampled to 
20 Hz. It is important to note that their technique compares a 
user’s movement to the user’s own template library. This 
allows results to be personalized to individual’s pointing 
behaviors, at the cost of requiring individual data collection. 

The next step occurs when a new pointing movement is being 
made (i.e., the candidate movement). In real time, the 
velocity profile is resampled to 20 Hz and smoothed using a 
Gaussian filter. To prepare for template matching, each 
template in the library is truncated to match the duration of 
the candidate movement, and then the same smoothing is 
then applied. Note that the smoothing of the templates 
happens after they are truncated, which was found to lead to 
better matched templates and higher accuracy. 

Once preprocessing is completed, the candidate movement is 
compared to each library template. This comparison occurs 
when each new candidate movement point arrives. A 
cumulative scoring function compares the candidate 
movement to the template: 
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(1)  

where Ti is the ith template in the library; S(Ti*) is the prior 
calculated score; Cj and Tij are the jth velocity values from the 
candidate and current template smoothed velocity profiles, 
respectively; and nc and nt are the number of points in the 
candidate and current template smoothed velocity profiles, 
respectively. Once the candidate movement has been 
compared to all templates, the template with the lowest score 
is selected as the best match.  

Finally, to predict the candidate movement’s final endpoint, 
the technique uses the travel distance associated with the best 
matched template and applies that distance to the current 
direction of the candidate’s movement from the original start 
point. As with other endpoint prediction techniques, the 
accuracy of KTM improves as the candidate movement 
progresses towards the target. It was found that on average, 
KTM predicts the endpoint location within 83 pixels of the 
true endpoint when 50% of the movement has been 
completed, 48 pixels at 75%, and 39 pixels at 90%. This 
performance was better than prior kinematic endpoint 
prediction methods [33].  



 

 
Figure 2. The KTM approach considers the velocity profile of 
a movement as a 2D gesture. A partial candidate movement is 
compared to a known template, and the endpoint is inferred. 

Figure taken from [45] 

HEAD-COUPLED KINEMATIC TEMPLATE MATCHING  
To adapt the KTM approach for ray pointing in VR 
environments, we consider a traditional ray pointer which 
acts like a virtual laser pointer. The virtual ray has 5 degrees 
of freedom: the user must specify the origin (X, Y, Z) and 
direction (θh, θv) of the ray. The goal of our technique is to 
predict the final controller location and direction while the 
pointer movement is still in progress. We adapt and extend 
the KTM technique in three important ways: 

1) The KTM method was built for 2D cursor pointing, 
predicting the (X, Y) coordinates of the movement’s 
endpoint. To adapt the technique for 3D ray pointing, we 
are not predicting an “end point” per se, rather the final 
landing position of a ray. Thus, estimates of not only the 
3D coordinates of the handheld controller, but also the 
angle at which the ray is being emitted, are needed. 

2) The KTM method only considers the velocity profiles of 
the cursor in the template matching procedure. Thus, a 
cursor’s velocity profile across targets with different 
distances may not be distinguishable in the first part of 
its movement [19, 26]. We extend this method to 
consider user head movement, hypothesizing that this 
additional channel may increase prediction accuracy. 
We call this head-coupled variation HC-KTM. 

3) The KTM method selects one, best matching template, 
to estimate the endpoint distance. We extend the method 
to a top-n approach, where the weighted average of 
multiple matching templates may be used, allowing for 
the compensation of a poorly matching individual 
template. We call this top-n variation KTM-N.  

Together, these 3 enhancements form the basis of our Head-
Coupled Kinematic Template Matching (HC-KTM-N) tech-
nique, which maintains the desirable properties of KTM. The 

technique is target-agnostic, straight-forward to implement, 
and can be personalized to individual users. The approach 
follows the same 4 general steps of KTM, described below. 
Step 1.  Building the Template Library 
The template library is built by capturing selection 
movements for known targets, considering both the motion 
of the controller and the head during selection. Because these 
are spatial input channels, we must consider both the location 
and the angle of the controller and head (Figure 3). As such, 
each template consists of four velocity profiles (Figure 4):   

• CP (mm/s): Controller positional velocity - the change in 
the controller’s (X, Y, Z) origin coordinates over time. 

• CA (deg/s): Controller angular velocity - the change in 
angle of the controller’s forward-facing vector over time. 

• HP (mm/s): Head positional velocity - the change in the 
HMD’s (X, Y, Z) origin coordinates over time. 

• HA (deg/s): Head angular velocity - the change in angle of 
the HMD’s forward-facing vector over time. 

In the previous movement angle distance KTM technique, 
the template library was modified to crop any backtracking 
from a template; initial testing found that adequate results 
were achieved without performing this step and it was 
omitted. Unlike KTM, we found it necessary to do an initial 
smoothing of the templates, given the noise introduced by 
midair 6-DOF devices. A Gaussian smoothing operation was 
performed on each of the velocities using a 5-point window. 
The profiles were then resampled to 20 Hz in preparation for 
comparison to subsequent candidate movements.  
Step 2. Preprocessing Candidate Pointing Movements 
As a new candidate movement is captured, the position and 
angle values of the head and controller are collected. They 
are used to create the four partial velocity profiles, which are 
smoothed using a 5-point Gaussian window and resampled 
to 20 Hz as each new point is collected. As with KTM, each 
velocity profile in the template library that is longer in 
duration than the candidate movement is truncated to the 
same length as the candidate movement.  

Figure 4. Each template consists of four velocities: a) 
Controller positional velocity. b) Controller angular velocity. 

c) Head positional velocity. d) Head angular velocity. 

Figure 3. Top view of a ray pointer acquisition movement. 
Both the head and controller change in position and angle. 



 

Step 3. Matching Candidate Movements 
The candidate movement, C, is then compared to each 
template, Ti, at the arrival of each new movement point using 
the same cumulative controller scoring function presented in 
Equation 1. However, in this case, the scoring calculation is 
repeated four times, once for each of the four velocity 
profiles, resulting in four scores (i.e., Scp, Sca, Shp, and Sha), 
that correspond to the velocity profiles CP, CA, HP, and HA.  

The final cumulative scoring function, S(Ti), is defined as a 
weighted sum of the four individual scores: 

S(Ti) = aScp(Ti) + bSca(Ti)  + cShp(Ti)  + dSha (Ti)       (2) 

Where, a, b, c, and d are tuning parameters. Note that by 
setting a, c, and d to 0, the model reduces to the KTM model 
and uses only the velocity profile of the controller angle. 

Step 4. Calculating the Expected Landing Position 
Unlike KTM, which considers only top matching templates, 
the n-best template matches are ranked by the minimum val-
ues of S(Ti). To calculate the expected final movement angle 
distance of the ray, a weighted average of the movement an-
gle distances of the top-n templates is computed. The tem-
plate’s weight, wi, is defined as the reciprocal of S(Ti), and 
the template’s movement angle distance as di. Using these 
values, the weighted average angular distance is calculated: 

μ = ∑ (𝑤𝑤𝑖𝑖∗𝑑𝑑𝑖𝑖)𝑛𝑛
𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1

   (3) 

Using this weighted average angular distance (µ), the 
controller’s initial angle is rotated by the magnitude of µ, 
along the current angle of motion. The same approach is used 
to calculate the expected controller location. Using the 
weighted average of the top-n template’s controller dis-
tances, the magnitude of this average is added to the initial 
controller’s position along the current direction of move-
ment. By combining the expected angle and location, the 
final ray pointer landing position is calculated (Figure 5). 
EXPERIMENT 1 – HUMAN POINTING BEHAVIOR  
The first experiment gathered initial data to better understand 
human head and hand behaviors during ray pointer move-
ments using controlled target distances and sizes. The 

experiment consisted of a pointing task in a VR environment, 
using a ray pointer, without prediction enabled.  

Participants 
Seventeen participants (11 female), with no major motor 
impairments and normal or corrected-to-normal vision (only 
contact lenses were allowed) were recruited. They ranged in 
age from 18 to 26 (M=20.9, SD=2.0). Participants were 
compensated $30 for their time. A Randot Stereo Optical 
Test was administered prior to the experiment to ensure 
adequate stereo vision. All participants were right-handed 
and operated the controller with their right hand. 

Apparatus 
The experiment was conducted using an Oculus Rift CV1 
head-mounted display, with a resolution of 2160×1200, 
using a single Oculus Touch handheld controller for input. 
The Index Trigger button was used for selection. The 
position and angle of the HMD and controller was tracked 
using Oculus Constellation Sensors. The system ran on a 3.7 
GHz Intel Core i7-8700k desktop computer with an NVIDIA 
GeForce RTX2080 graphics card and was developed in 
Unity3D. The HMD output updated at a frequency of 90 Hz, 
and both the HMD and controller positions and angles were 
updated at a rate of 90 Hz. The handheld controller 
manipulated a ray pointer using an absolute mapping, with 
the ray originating from the tip of the controller, aligned with 
the z-axis of the local handheld controller coordinate system. 

Procedure 
The task was a reciprocal three-dimensional pointing task, 
wherein participants pointed back and forth, in succession, 
between a start and end target. No distractor targets were 
included. The target to be selected was yellow, and the other 
was semi-transparent gray. The background of the scene was 
a gray gradient, and in the virtual environment, subjects 
stood on an elevated platform above an infinite grid ground 
plane. The two targets were rendered as spheres (Figure 6). 

The goal target turned green when it was intersected by the 
ray, to indicate the target could be selected. Upon successful 
selection, the targets swapped colors. If the ray did not 
intersect the goal target when a button-click occurred, the 
trial counted as an error, and the participant tried again until 
successful. Subjects were asked to complete the task as 
quickly as possible, without exceeding an error rate of 4%. 
The error rate was displayed after each block of trials.  

Figure 6. First person view of the study environment. 

Figure 5. To predict the final landing position of the 
ray, the prediction for the final angle and position of 

the controller are combined. 



 

During the study, participants stood on a marked floor 
position and were asked not to move their feet. The software 
and the experimenter ensured their feet were in the proper 
position prior to each trial. To calibrate, prior to the study, the 
coordinate system was reset with the participant on a marked 
spot with the HMD in a resting state. The experimenter could 
recalibrate at any time during the study, if needed. The point 
between the eyes was the origin, with the positive axes being: 
left to right (X), bottom to top (Y), and back to front (Z). 
Before each session, participants performed practice trials to 
become familiar with the task – lasting about 2 minutes.  

Design  
A repeated-measures, within-participant design was used. 
The position of the goal target varied based on three 
independent variables – Depth (3m, 6m, 9m), Theta (25°, 
50°, 75°), and Position (0°-315° at 45° increments)   
(Figure 7). Depth manipulated the distance between the 
target center and the origin. Theta changed the magnitude of 
the angle between the vectors generated by connecting each 
target to the origin, with the center vector of these two 
vectors laying along the Z-axis. For each combination of 
Theta and Depth, there was a ring of possible target locations 
(i.e., Position), evenly distributed at 45° increments (Figure 
7b). In each reciprocal task, targets were placed in opposite 
locations of the ring, but their depth values could vary 
(Figure 7a). 

A target’s size was determined by its angular width, W (4.5°, 
9.0°), relative to the origin. With W fixed, the further the 
targets the larger the radius; but the angle needed to place the 
ray within its boundaries remained fixed. In each reciprocal 
task, the angular width of both targets was equal (Figure 7a). 

The experiment was done in one, approximately 60 minute, 
session. The study had 54 blocks for each of the 54 possible 
combinations of Depth (start target), Depth (end target), 
Theta, and W in random order. Participants could take breaks 
between blocks to prevent fatigue. For each block, 4 sets of 
reciprocal trials were performed for the eight Positions (i.e., 
4 pairs), and consisted of nine clicks (i.e., 8 reciprocal 
selections between the two targets at opposite positions). 
This resulted in 54 x 4 x 8 = 1728 trials per participant.  

Results and Analysis 
Prior to all analysis, outliers (trials where time was more than 
two standard deviations in length compared to trials with the 

same Theta and W) were removed; which was 6% of the data. 
All remaining trials were analyzed, however, trials where 
errors occurred (1.7%) were only analyzed to the first click. 
Movement Time 
Movement time was defined as the duration between select-
ing the start target and the next subsequent selection, regard-
less of the success of the selection. A repeated measures 
analysis of variance showed main effects of Width (F1, 16 = 
581.5, p < .0001) and Theta (F2, 32 = 693.4, p < .0001). Also, 
significant was the interaction between Width and Theta (F2, 

32 = 7.7, p < .005). Target depth (Depth) did not have a 
significant effect on movement time (F2, 32 = 2.8, ns).   

Interestingly, across the 6 combinations of Theta and Width, 
the performance trend followed an angular derivation of 
Fitts’s Law [17, 27], with an extremely high fit (R2 = 0.993) 
(Figure 8): 

𝑀𝑀𝑇𝑇 = 𝑎𝑎 + 𝑏𝑏 log2 �
𝑇𝑇ℎ𝑒𝑒𝑡𝑡𝑎𝑎
𝑊𝑊𝑖𝑖𝑊𝑊𝑡𝑡ℎ + 1� 

While such an angular derivation has been examined 
previously for 2D large display interactions, our results 
contrast prior work. In particular, Jota et al. achieved a fit of 
only 0.61 for horizontal pointing and 0.33 for vertical 
pointing on large displays [25]. Kopper et al. achieved a 
higher fit of 0.96 [29], but used a more complex angular 
model (IDDP), which resulted in a fit of only 0.74 with our 
data. While our data provides an initial validation of Fitts’ 
Law for ray pointing in VR environments, this contrast to 
prior work warrants future investigation. 

Head and Controller Angular Movements 
When measuring the cumulative angular distance that the 
controller and HMD travelled, both the HMD Angle (F2, 32 = 
272.4, p < .0001) and Controller Angle (F2, 32 = 116673, p < 
.0001) were significantly impacted by Theta. For HMD 
angle, there was a significant effect of both Width (F1, 16 = 
79.1, p < .0001) and Position (F7, 112 = 110.1, p < .0001). 
These effects were also observed for Width (F1, 16 = 18.2, p < 
.005) and Position (F7, 112 = 7.6, p < .0001) on the Controller 
Angle. Notably, the HMD moved further for smaller targets 
– likely, to better see smaller targets. This shows that for a 
predictive model, head movement may provide information 
not apparent from just the controller movement. Depth did 
not have a significant effect on HMD or Controller Angle.  

Figure 8. The effect of width and angular distance on 
movement time results in a high degree of fit with an 

angular derivation of Fitts’ Law. 

Figure 7. The target layout. a) Reciprocal targets were located 
on opposite sides of the z-axis at varying depths, with equal 

angular widths. b) Targets appeared at one of 8 angles. 



 

Comparing the magnitude of the angular movement between 
the two devices, the HMD moved a fraction of the angle that 
the controller moved (F1, 16 = 422.0, p < .0001) (Figure 9). 
This is intuitive – the controller angle is required to move 
within the bounds of the goal target, while the HMD is 
required to move just enough so that the target is in the user’s 
field of view. This is further illustrated in Figure 10, which 
shows a scatterplot of the final focal point of the HMD and 
Controller when each target was acquired. It can be seen that 
the controller focus (blue) was within the bounds of the 
target, while the HMD only travelled a fraction of the 
required distance, with observable variation between trials. 

Head and Controller Velocity Profiles 
In addition to looking at the angular movements of the HMD 
and controller, it is also interesting to observed how velocity 
profile templates differ across different movement angles. To 
generate “representative” velocity profiles, the velocity 
profiles were resampled to 20 Hz, and the average velocity 
at each interval was computed (Figure 11). Consistent with 
prior findings [19, 26], the velocity profiles for the handheld 
controller were not distinguishable in the initial stage of 
movement across the three movement angles. However, the 
velocity profiles for the HMD diverge immediately. This 
suggests that incorporating head movements within a 
predictive model may allow predictions to be made earlier.  
Model Parameters and Performance 
To analyze the performance of our model and tune its param-
eters, intra-participant template libraries were created from 
each user’s trials. With outliers removed, each movement 

was compared against the other templates in the user’s 
template library. To calculate accuracy for individual predic-
tions, the angular distance between the predicted ray and the 
ray from the controller origin through the center of the 
intended target was computed. This angular accuracy 
informed the precision of the model, similar to pixel distance 
used in 2D models. Since the data collection experiment only 
used three discrete angular distances, it served as an initial 
testbed of the model – if the model worked as expected, 
candidate motions would match templates with the same 
angle of movement. 

The model had two main factors to manipulate:  how many 
templates to use in the top-n matching algorithm and the best 
values to assign to the weights of the scoring algorithm for 
the four velocity profiles (Eqn. 2). To determine n for the 
top-n matching templates, four equally weighted compo-
nents were used (i.e., a, b, c, d = 1), and the cumulative 
accuracy of all trials, of all participants, for different values 
of n was calculated. Results improved gradually from n=1 to 
4, whereas n = 4 to 10 were similar, with n = 7 providing the 
best result, which is the value used for our implementation. 

To determine the best weighting values for the scoring func-
tion (a, b, c and d - Eqn. 2), various values were tried to op-
timize the model’s accuracy at 40% of the movement pro-
gress, prioritizing early prediction. The importance of each 
individual component is shown in Figure 12, showing the av-
erage angular accuracy when each component was used in-
dividually. The data suggests the HMD angle may provide a 
better indicator for the first half of the movement, while the 

Figure 11. Representative angular velocity profiles for the HMD and Controller by movement angle. The highlighted regions 
illustrate that in the first 150 ms of movement, profiles only diverge for the HMD, not the controller. 

Figure 10. A scatter plot of the final controller (blue) and HMD 
(orange) locations, for each position. Points are the intersection 

with a plane centered at the target location. 

Figure 9. The HMD and Controller angular movements, with 
respect to the Angular Distance to the target. Error bars 

represent standard error. 



 

controller angle may be a more accurate predictor by the end. 
This may be due to the velocity profiles of the HMD being 
more distinguishable in the first phase of movement (Figure 
11). This is an important result, as it demonstrates the poten-
tial benefits of incorporating data from head movements. By 
considering the relative performance of each input channel, 
setting the best at 1 and worst at 0.5, and interpolating the 
remain two values, we derived values of a = 0.95, b = 0.5, c 
= 0.86, and d = 1. We call this specific model HC-KTM-7, 
for “Head-Coupled KTM” with n = 7. 

For this controlled study, the calculated parameter values 
resulted in average accuracies of 6.4°, 3.3°, and 2.3° at 50%, 
70%, and 90% of the way through the task, respectively. 
While promising, it is important to note that this should only 
be considered initial validation, as the test set only used three 
discrete angular distances. The next study validates the HC-
KTM-7 model with a continuous range of target conditions. 

EXPERIMENT 2 – MODEL VALIDATION 
A second experiment was conducted to further validate the 
model and compare it to baseline approaches. Experiment 1 
only examined three movement angles where this second ex-
periment evaluates the robustness of the model against a con-
tinuous range of angles, depths, positions, and widths. Test-
ing the model in a second experiment helps avoid the poten-
tial over-fitting of model parameters, which were set using 
data gathered in Experiment 1. Again, this study collected 
movement behaviors without any prediction enabled. 

Participants 
A total of 12 participants (9 female) completed Experiment 2 
and were recruited from the pool of 17 participants in 
Experiment 1. Participants were compensated $30. 

Apparatus and Procedure 
The same apparatus and procedure that was used in 
Experiment 1 was used in Experiment 2. 

Design 
A repeated measures within-participant design was used. As 
with the first experiment, the task was a reciprocal three-
dimensional pointing task with no distractor targets. 

The only controlled variable was Theta, which tested all 
angles from 15° to 85° at 1-degree intervals. All other task 
variables were randomized. The Depth of both targets ranged 
continuously from 3m to 9m, Position ranged from 0° to 
359°, and angular width (W) ranged from 4.5° to 9.0°.  

The experiment was performed in one session lasting 
approximately sixty minutes, with each angle of Theta 
repeated five times in random order. To prevent fatigue and 
to allow for breaks, the experiment was divided into 50 equal 
sections; each section presented 7 pairs of targets with 
randomized Theta values, requiring 6 reciprocal selections. 
This resulted in 50 x 7 x 6 = 2100 trials per participant.  
Before each session, participants were given practice trials to 
familiarize themselves with the task, lasting about 2 minutes.  

Results 
All trials were analyzed, however, trials where errors 
occurred (2.7%) were only analyzed up until the first click. 

To validate our model (HC-KTM-7), it was compared to a 
direct adaptation of the kinematic template matching (KTM) 
model. Recall, our model varies from KTM in two ways: a 
weighted average of the top 7 matching templates is used, 
and a head-coupled approach is utilized, using 4 velocity 
profiles instead of one. As such, we provide a comparison to 
KTM-7 (KTM, n=7) and HC-KTM-1 (KTM, with head 
coupling), to understand the relative benefit of these two 
variations. As in prior endpoint prediction work [63], the 
results are also compared to a Baseline that utilizes the 
current position of the ray without any prediction applied. 

The results indicate that HC-KTM-7 performs better than the 
KTM technique, and the other 2 intermediate variants (KTM-
7, HC-KTM-1; Figure 13). This is encouraging, as it shows 
both of the proposed enhancements can increase the accuracy 
of predictions. Compared to the Baseline with no prediction, 
HC-KTM-7 improved accuracy by a factor of 2.7x at 40% 
progress. However, near the end of the movement, the 
baseline seems to be most accurate. This is consistent with 
prior findings [63] and suggests that adaptive techniques that 
can detect when a movement is ending are promising. 

It is interesting that HC-KTM-1 outperforms KTM-7, 
indicating that the improvement of our technique primarily 
stems from using a head-coupled approach. The differences 
in accuracy are most pronounced at 40% progress, with 
accuracies of 10.0° for HC-KTM-7, 11.6° for HC-KTM-1, 
15.0° for KTM-7, 17.9° for KTM, and 26.4° for the Baseline.  
Overall, our new model, HC-KTM-7 provided promising 
results. Prediction accuracy was 7.3° at 50% of the way 
through the task, 4.4° at 70%, and 3.4° at 90%. When looking 
at the target hit rate, i.e., how often predictions fell within the 
bounds of the goal target, HC-KTM-7 outperforms the basic 
KTM condition, achieving an average hit rate of 46.2%, 70% 
of the way through a movement, compared to 37.6% (Table 
1). While these predictions can still be improved, they are on 
par with prior work which used a similar protocol [33, 53], 
but are also dependent on the width of the goal targets. 

Figure 12. The prediction accuracy derived from each input 
channel at different stages of the movement. 



 

Furthermore, to utilize the model, a target hit is only required 
to predict the intended target if it is in a densely populated  
area. Thus, there may be a novel opportunity to combine 
selection refinement techniques [21, 30] with this predictive 
model in some instances. Alternatively, the model could also 
be used to inform interface layouts, ensuring that adequate 
spacing between targets in VR environments is provided. 

To examine the necessity of personalized template libraries, 
accuracies were calculated for each participant when using 
other user’s template libraries (Table 2). In all cases, 
matching against the participant’s own template library, 
achieved the best accuracies. The average result when 
comparing to other templates is still within 3° (9.96° vs. 
12.94°). It is interesting to note that that personalized data 
may be more important for some users (e.g. P3) likely 
depending on the uniqueness of their pointing behaviors. For 
example, the angular head movements of P3 were only 
29.2% of the average across all other participants. 

DISCUSSION AND FUTURE WORK 
The presented model shows promise for VR ray-pointer 
predictions. By modifying the KTM model and introducing 
head-coupling and considering the top-n matches, the HC-
KTM-7 model’s predictions were 1.8x and 2.7x more 
accurate than KTM and the baseline respectively, 40% of the 
way through a user’s movements.  

Although developed and evaluated within a 3D VR 
environment, the model should generalize to 2D platforms. 
Targets were shown in 3D space, but the task itself could be 
decomposed into the 2D angular movements of the ray 
pointer. Specifically, it would be interesting to use the model 
for distant pointing on large, high resolution displays, where 
2D angular ray pointing is also used. Within this context, the 
present work can be seen as building on prior literature which 
has coupled head and hand movements to divide large 
display pointing into coarse and precise modes [42]. Notably, 
while the model can be applied to 2D tasks, it still requires 
and uses 3D input channels. In particular, the model must 
estimate the final 3D position of the controller (Figure 5). 
The 3D movements of the hand can be substantial – on 
average the hand moved 18.7cm, and as much as 45cm in 
some trials (average maximum across all participants). If the 

model were only based on 2D angular data of the ray, then 
the predictions would be less accurate. Fortunately, most 
virtual ray pointing controllers provide full 6-DOF input. 

Of course, HC-KTM-7 is only one possible predictive model. 
Comparing our results to similar efforts such as regression-
based extrapolation and target classification could yield in-
teresting results. Future models could include probability 
distributions across possible targets to influence predictions.  
Limitations 
One aspect of 3D VR pointing that was not addressed, is that 
multiple targets can be located along the same projected path 
at varying depths, requiring disambiguation. The HC-KTM 
model only predicts the location of the ray, not the depth of 
the target. While the study varied the target depth, the analy-
sis did not show any effect from depth on pointing behaviors, 
making this a challenging problem for prediction. Future 
work should explore additional input channels, such as gaze 
[60], to predict object depth and extend the model into a truly 
3D prediction. Selection refinement techniques [21, 30] 
could also be used when multiple targets fall along the ray. 

Our study also only examined movements across the center 
point of the user’s field of view. Our initial implementation 
indicates the captured templates are still applicable (just as 
templates are applicable across direction of movement). Our 
hope is that the top-n approach is useful in this context. This 
certainly requires careful evaluation and validation in the fu-
ture. The alternative, capturing movements for every possi-
ble target location, would probably not be feasible, due to the 
resulting size of the template library. 

Another limitation of the study was the lack of distractor tar-
gets, which were omitted to simplify the task environment 
and capture raw target acquisition movements. The visual 
presence of distractors could influence a user’s behavior, 

Figure 13. Accuracy curves for the Baseline and 4 variants 
of the model, i.e., HC-KTM-7, HC-KTM-1, KTM-7, KTM. 

Table 2. Accuracies (at 40%) for each participant (rows) when 
using another user’s template library (columns). 

 Target Hit Rate 
Distance 
Travelled 

KTM 
(n = 1) 

KTM-7 
(n = 7) 

HC-KTM-1 
(n = 1) 

HC-KTM-7 
(n = 7) 

50% 15.1% 14.8% 12.2% 22.7% 

60% 26.1% 28.0% 18.4% 34.8% 

70% 37.6% 42.9% 23.8% 46.2% 

80% 47.8% 56.2% 28.5% 55.6% 

90% 55.2% 65.8% 31.8% 61.8% 

Table 1. The percentage of predictcions where the predicted 
ray hits the intended target; for 4 main conditions. 

 



 

which could in turn interfere with the model. In particular, a 
user may duck, lean, or reach around distractors to get a good 
view of their intended target. Incorporating, or filtering out, 
such behaviors is an interesting topic for future studies.  

Our study may also be limited in that the same participant 
pool was used for both studies. It is possible that the param-
eter values which were tuned may have been biased towards 
this participant pool, and validating across a larger spectrum 
of users would be worthwhile future work. 

Last, our results show predictions may not be as accurate as 
the actual ray position during the final stage of pointing. This 
creates an interesting opportunity for a hybrid approach, 
using our model in the early ballistic phase of pointing, and 
considers the current ray position in the adjustment phase.  

Personalization of Template Libraries 
An advantage of the model personalization is that it can be 
tuned to each user; a drawback is that training data is needed. 
One solution is to start a new user with a generic template 
library; slowly replacing that library with the user’s own data 
as movements are collected. There may also be classes of 
users with similar behaviors, who could share predetermined 
template libraries. For example, users could be classified 
based on the extent with which they tend to move their head.   

Complexity 
A related factor is the number of templates that are in an 
individual’s template library. Our implementation used 
approximately 2000 templates for each user. The model was 
able to run in real-time, with minimal optimization, with no 
perceivable impact on performance, at an input rate of 90 Hz. 
With each incoming input event frame, a prediction occurs 
in just under 11ms. However, any technique that requires 
additional resources must be used with caution, given the 
nature of computation-heavy virtual environments. Limits 
should be placed on the template library size, and the 
predictions could be performed on a separate thread. 

Selection Facilitation Techniques 
An exciting line of future research is developing new VR 
pointing enabling techniques that use movement predictions. 

Techniques that dynamically adapt the CD ratio [28] could 
benefit particularly from early prediction. As the user 
initially moves the cursor, it could accelerate towards the 
predicted region, and decelerate when it arrives. As our 
model performs best at the early stages of movement (e.g. 
40% mark), this type of facilitation may be particularly 
suitable for our model. In this case, the predicted landing 
position would not need to be precisely located at the 
intended target, as the technique would benefit from 
accelerating towards the general target region. 

Alternatively, target snapping (e.g. [21, 57]) could benefit 
from early predictions – instead of just snapping to the 
closest target to the cursor, the technique could snap to the 
closest target in the predicted region. This could support 
faster access to targets, when predictions are made in the 

early stages of the movement. For a snapping technique, the 
required prediction accuracy would depend on target layout. 
In a dense environment, the prediction could be drawn to a 
nearby, inaccurate target. Based on our study results, we 
believe our model could work well for target snapping when 
there is an average of approximately 7° between targets. This 
would be large enough for larger UI buttons (e.g. the Oculus 
Quest Home screen buttons, which range from around 10° - 
20°), but may be inadequate when selecting small and dense 
scene content in a VR environment. 

It is important to note  that any facilitation technique is likely 
to change the user’s behaviors due to the perception/action 
loop in target acquisition [37].  This in turn may impact the 
model’s performance. This work collected data when 
prediction was inactive but future studies should collect data 
and determine user behaviors when predictions are active. 

Other Potential Applications 
Predictive modelling could improve other aspects of VR user 
experiences beyond target selection. Recent work has shown 
the potential of haptic retargeting in VR [6], where a user’s 
movements are biased towards a physical proxy. The success 
of such techniques required the ability to predict what region 
a user is moving towards [12]. Similarly, it has been recently 
shown that foveated rendering [2], which provides a higher 
resolution rendering at the user’s point of focus, can benefit 
from predicting where a user is going to gaze next. By 
leveraging our technique, such predictions could be made 
early enough to be unnoticeable by the user. Finally, by 
predicting earlier what a user will do, associated processing 
could begin proactively, reducing latency for associated 
intended actions. This could be especially useful in VR 
where the reduction of latency is particularly important.  

It is important to note that our technique is target agnostic, 
and as such predicts regions and not targets. In some use 
cases, (e.g. foveated rendering, CD gain adjustment), the 
technique could be useful on its own, without making a 
specific target prediction. In other cases, the model could be 
paired with facilitation techniques (e.g. target snapping) that 
are target-aware. In such circumstances, the predicted 
regions could be used to identify target likelihoods (e.g. 
[63]). This would be a useful area of future research. 

CONCLUSION 
This work has demonstrated that by using an adapted 
kinematic template matching technique (HC-KTM-7), ray-
pointer landing positions can be predicted early in a user’s 
movement. A key insight is that it is beneficial to integrate 
the movements of the head into the model. The presented 
approach increases landing position prediction accuracy by a 
factor of 1.8x at 40% of the way through a movement, when 
compared to traditional KTM, and by a factor of 2.7x when 
compared to a baseline using the current ray position. This 
work has provided a first exploration into pointer prediction 
in VR, opening the door for future enhancements to 3D user 
experiences. 
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