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ABSTRACT 
In this paper, we present Acustico, a passive acoustic 
sensing approach that enables tap detection and 2D tap 
localization on uninstrumented surfaces using a wrist-
worn device. Our technique uses a novel application of 
acoustic time differences of arrival (TDOA) analysis. We 
adopt a sensor fusion approach by taking both “surface 
waves” (i.e., vibrations through surface) and “sound 
waves” (i.e., vibrations through air) into analysis to 
improve sensing resolution. We carefully design a sensor 
configuration to meet the constraints of a wristband form 
factor. We built a wristband prototype with four acoustic 
sensors, two accelerometers and two microphones. 
Through a 20-participant study, we evaluated the 
performance of our proposed sensing technique for tap 
detection and localization. Results show that our system 
reliably detects taps with an F1-score of 0.9987 across 
different environmental noises and yields high localization 
accuracies with root-mean-square-errors of 7.6mm (X-
axis) and 4.6mm (Y-axis) across different surfaces and 
tapping techniques. 
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INTRODUCTION 
As computing devices become increasingly ubiquitous, 
there is a pressing need for input technologies that can be 
always available [34]. While wearable devices like 
smartwatches and smartglasses enable always-available 
touch input, it comes at the cost of small physical size, 
which limits user’s input due to the fat finger problem [41]. 
One potential solution is to exploit the surfaces in the 
environment around us [18], which provide a large area for 
accurate and comfortable input.  

 
Figure 1: Acustico detects and localizes taps on unmodified 
surfaces using wrist-worn accelerometers and microphones 
on the bottom. 

Prior work has investigated tracking touch input on 
unmodified surfaces. However, these efforts primarily use 
optical schemes with fixed cameras in the environment [2, 
7, 30] or wearable cameras [19, 47] that are expensive, 
power consuming and might draw privacy concerns [3, 
22]. Another thread of research focuses on finger-worn 
ring devices that can track fingertips on the surface using 
accelerometers [27], optical flow sensor [50], and infrared 
sensors and gyroscope [26]. However, rings have power 
and individual sizing constraints that limit their practicality 
as consumer devices. Smartwatches, on the other hand, 
have increasingly become popular. But wrist-worn devices 
that can track touch input on uninstrumented surfaces have 
been largely overlooked in the literature.  

In this paper, we present Acustico, a passive acoustic 
sensing approach that enables tap detection and 2D tap 
localization on uninstrumented surfaces using a wrist-
worn device. This is achieved using a novel application of 
acoustic time differences of arrival (TDOA) analysis. To 
overcome the challenges posed by the wristband form 
factor (e.g., sensors have to be close to each other), we 
adopt a sensor fusion approach by exploiting the 
propagation speed difference of “surface wave” (i.e., 
vibrations through surface) and “sound wave” (i.e., 
vibrations through air) to better estimate the TDOA and 
localize the tap (Figure 1). Through a careful design 
procedure, we come up with an optimal sensor 
configuration that meets wristband constraints and has 
better sensing performance. To validate the use of 
Acustico, we implemented a proof-of-concept wristband 
prototype with four acoustic sensors, two accelerometers 
and two microphones. We tested the system for tap 
detection and 2D tap localization. For tap detection, we 
evaluated the system under different types of 
environmental noise. For 2D tap localization, we evaluated 
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the system on five different surface materials (wood, steel, 
plastic, glass and fabric), using two tap methods (finger-
pad or finger-nail) and two hand configurations (one-hand 
or two-hands). Results from 20 participants show that our 
system can reliably detect taps under different noise 
conditions and achieve average error distances of 7.57mm 
(s.e. = 0.20mm) and 4.62mm (s.e. = 0.11mm) in two axes 
across all different test conditions. 

Our primary contributions include: 1) a sensor fusion 
approach for wrist-worn devices to detect and localize taps 
using acoustic TDOA analysis; 2) design and development 
of a prototype using two different types of acoustic sensors 
and customized software; and 3) a validation of this 
approach through a series of experiments. 
RELATED WORK 
This work builds and extends on prior work in many areas, 
including touch input on surfaces, wrist-based gesture 
sensing, active sensing, and passive acoustic localization.  
Touch Input on Surfaces 
Research on touch input on surfaces can be mainly divided 
into two categories, touch input on instrumented surfaces 
and touch input on uninstrumented surfaces.   

Touch Input on Instrumented Surfaces. Plenty of existing 
work supports touch sensing by instrumenting or 
modifying the surface with capacitive [29, 43, 59], optical 
[16, 32], electrical impedance [51, 55, 58] and acoustic 
sensors [36, 37]. For example, Wall++ [59] uses 
conductive paint for patterning large electrodes onto a 
wall, turning ordinary walls into smart infrastructure 
supporting capacitive touch tracking. TouchLight [45] 
presents a touch screen display system on a sheet of acrylic 
plastic by instrumenting two video cameras behind the 
semi-transparent plane. Electrick [58] is a low-cost 
electrical impedance sensing technique enabling touch 
input on a surface painted with conductive coating. Since 
the surfaces always need to be instrumented or modified 
before sensing touch, these are not always practical.  

Touch Input on Uninstrumented Surfaces. Cameras in the 
environment or worn on user’s body allow sensing touch 
without instrumenting or modifying the surfaces. There are 
many existing optical schemes for touch sensing in the 
literature, including RGB cameras [2, 7, 25, 30], infrared 
cameras [1] and thermal cameras [39]. However, these 
approaches still require fixing the cameras in the 
environment or using wearable cameras [19, 47], which are 
expensive, power consuming and might introduce privacy 
issues [3, 22]. Aside from cameras, work has also been 
done to exploit a ring with IMU and light proximity sensor 
to sense touch [15] or track fingertip movements on 
uninstrumented surfaces [26]. None of the existing work 
uses wrist-based sensing. With the growing popularity of 
smartwatches, combined with their small touchscreen 
input space, enabling such surface input via wrist-based 
sensing holds a high potential for impact. 

Gesture Sensing using a Wristband / Smartwatch 
Another body of related research focuses on sensing finger 
gestures (e.g., pinch) [14, 31, 40, 44] and hand gestures 
(e.g., fist) [9, 11, 23, 33, 38, 42, 56] using the sensors on a 
wristband or a smartwatch. For example, GestureWrist 
[38] uses capacitive sensors to detect the changes in 
forearm shape to infer hand postures. CapBand [42] uses a 
similar ultra-low power capacitive sensing technique but 
achieves significant improvements on accuracy and 
gesture quantity. WristFlex [9] and Tomo [56] use force 
resistors or electrical impedance tomography (EIT) 
sensors to identify different hand postures. WristWhirl 
[13] supports 2D continuous input from wrist whirling 
using infrared proximity sensors on the wristband. 
Localization using Active Sensing  
Previous work has also shown the possibility to detect or 
localize a finger/finger-tap using active sensing methods, 
which use infrared [4], electrical [57, 60], magnetic [8] or 
acoustic signals [35, 54]. These approaches typically 
involve active transmission of a signal from a transmitter 
node and then analyzing the reception of that signal at the 
receiver node. FingerIO [35], for example, transforms the 
device into an active sonar system that transmits inaudible 
sound signals and tracks the echoes of the finger at its 
microphones. We investigated an active sensing approach, 
but there are fundamental constraints in the physics of this 
approach (detailed later in Discussion). 
Gesture Input and Localization with Passive Acoustics 
Many passive acoustic approaches have been employed to 
detect gestures [12, 20, 21, 52] and localize signals [17, 24, 
36, 37, 48, 49]. For gesture inputs, SurfaceLink [12] 
exploits a combination of accelerometers and microphones 
to sense gestures and uses them to control information 
transfer among devices. ScratchInput [20] relies on the 
unique sound produced when a fingernail is dragged over 
different surfaces to identify six scratch gestures.  

The TDOA approach. For localizing the acoustic signal, 
the most prevalent approach, which we also use in this 
work, is time difference of arrival (TDOA) analysis [10, 
24, 36, 37, 48, 49]. For example, PingPongPlus [24] 
instruments four contact microphones located at the 
outermost corners of the desired interactive region. When 
a Ping-Pong ball falls inside of this region, the signal 
arrives to the four sensors at different times, enabling a 
hyperbolic intersection localization. Likewise, 
SurfaceVibe [36] also uses four geophones in a similar 
setup to enable two interaction types, tap and swipe, on 
multiple types of surfaces. Instead of instrumenting the 
surfaces, Toffee [48] augments the mobile devices and 
laptops with four piezo sensors and demonstrates accurate 
resolution of the bearings of touch events around the 
devices, although the evaluation considers only a single 
user. Besides TDOA analysis, SoundCraft [17] instead 
uses a target signal subspace method, by adopting the basic 
idea of Multiple Signal Classification technique, which 
can localize acoustic signals even in noisy environment.  



Unlike the existing work, we are the first to embed two 
types of acoustic sensors in a wristband form factor to 
detect and localize finger-taps on uninstrumented surfaces. 
The wristband location and form-factor introduce two 
primary challenges: (1) Small distance between sensors: 
Due to the small form factor of the wristband, the distances 
between sensors are extremely small, which inherently 
requires a more precise estimate of TDOA; (2) Inconsistent 
coupling between sensors and surface: Since the 
accelerometers are embedded on the bottom of the 
wristband, the coupling between the accelerometers and 
surface highly depends on how users put their hands on the 
surface. Further, the accelerometer signals may also be 
affected by any hand movements right before tapping. 
Both introduce noises and instability in the received 
signals at the accelerometers. Our work overcomes these 
challenges and is the first work to our knowledge that 
detects and localizes taps on uninstrumented surfaces 
using wrist-based sensing. 
ACUSTICO: SENSING PRINCIPLE 
When a finger taps a table, the force applied to the surface 
causes deformation. As the contact point is relieved of the 
force, the surface retracts due to its elasticity, which 
generates vibrations propagating outward from the point of 
contact. On one hand, the vibration propagates through the 
surface, which we call the “surface wave”. The speed of 
the “surface wave” depends on the surface medium. In 
solid materials, such as wood, “surface wave” typically 
propagates at around 600 meters per second [24]. On the 
other hand, the vibrations also propagate through air, 
which we call the “sound wave”. The speed of the “sound 
wave” is relatively low, because air is compressible. In 
common indoor environments (20℃), the speed of the 
“sound wave” is about 343 meters per second [46].   

In this work, we take both “surface wave” and “sound 
wave” into consideration. To capture these two waves, our 
wristband prototype has four sensors underneath, two 
accelerometers for capturing the “surface wave” and two 
microphones for capturing the “sound wave” (see 
implementation details later).  

The sensor fusion approach is beneficial for both tap 
detection and tap localization. For tap detection, a tap is 
registered only when both waves are detected and pass a 
pre-defined threshold, which prevents many false 
detections if we only use a single type of sensor. To be 
specific, if we only use microphones, the system might not 
be able to work under a noisy environment. And if we only 
consider the data from accelerometers, multiple false 
positives may be introduced due to random hand motion.  

For tap localization, we used the time differences of arrival 
(TDOA) between each pair of the sensors to interpolate the 
tap location. To help explain, let us first consider an 
example of two sensors of the same type. If a tap occurs 
equidistant to the two sensors, the time difference of arrival 
will be the same. And the system can conclude that the tap 

occurred along a line equidistant from the two sensors. If 
the tap is closer to one sensor than the other, the tap can be 
inferred to lie somewhere along a hyperbolic curve, a set 
of points having a constant difference of the distances to 
two fixed points (i.e., two sensor locations). With more 
sensors, the tap location can be determined by calculating 
the intersections of multiple hyperbolic curves. A similar 
approach is used in Toffee [48] and SurfaceVibe [36]. 
However, we are targeting a wristband device which has 
specific constraints as mentioned earlier. The distances 
between each pair of the sensors have to be small (in our 
case, we assume 4cm along the length of the wrist and 
1.5cm along the width of the band). This makes the 
differences of TDOAs at different tapping locations 
extremely small (e.g., 1 - 30µs) and hard to detect. To 
overcome these issues, we calculate the TDOA between 
accelerometers and microphones. Since the propagation 
speeds in surface and air are different, this adds extra time 
differences by using the data from two different types of 
sensors. We further use a high sampling rate DAQ (data 
acquisition device) (1MHz) to increase the sampling rate 
so that we can capture such a small time difference. 

 
Figure 2: TDOAs from taps C and D are same for sensors A 
and B if they are both mics or both accelerometers, but 
different if one is mic and other is accelerometer. 

Let us consider a simplified example shown in Figure 2. 
We assume there are two taps (C, D) that are aligned with 
two sensors (A, B) on a wooden surface. The signals that 
are captured by Sensor A and Sensor B have propagation 
speeds of VA and VB respectively. Here, the time 
difference of arrival between Sensor A and Sensor B when 
tapping at C should be: 
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Similarly, time difference of arrival between Sensor A and 
Sensor B when tapping at D should be: 
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Our goal is to maximize the difference between these two 
TDOAs so that the two taps can be easily distinguished: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒	(|𝑇𝐷𝑂𝐴! − 	𝑇𝐷𝑂𝐴$|) 

If Sensor A and Sensor B are of the same type, then the 
propagation speeds VA and VB would be the same as well. 
The difference between the two TDOAs (both equal to 
AB/V) is zero. However, if Sensor A is an accelerometer 
and Sensor B is a microphone, then we have VA » 2VB 



(600m/s vs. 343m/s). In this case, the difference between 
two TDOAs is:  
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From this simplified example, we can see that extra time 
differences can be added by calculating the TDOA 
between accelerometer and microphone. And with larger 
time differences between two taps, the localization 
accuracy can be improved accordingly. 
SENSOR CONFIGURATION 
Now that we know we require the two sensor types, the 
next question is what should be the configuration of those 
sensors on the wristband. In this section, we discuss the 
pros and cons of different potential sensor configurations 
and provide the rationales of our final prototype design.  

We define the X-axis to be the wrist’s radial-ulnar and the 
Y axis to be the orthogonal direction (Figure 3). In theory, 
localization along X axis would always be easier than that 
along Y axis. To explain, let us consider another simple 
example about two taps along X axis (C, D, Figure 3(a)) 
and Y axis (E, F, Figure 3(b)) using two sensors of the 
same type (e.g., Sensor A and B are both microphones).  

 
Figure 3: (a) Two taps along X axis, (b) Two taps along Y axis. 

Assuming a signal propagation speed of V, the difference 
between the two TDOAs when tapping on C and D (X 
axis) and E and F (Y axis) should be respectively: 
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We assume the distance between Sensor A and B to be 4 
cm (a common wrist length), the distance between Sensor 
A and Tap D to be 18cm (a common hand size), the 
distance between the two taps (C and D, E and F) to be 
4cm, and the speed of sound to be 340m/s. Populating the 
equations with these numbers, we get the differences of 
two TDOAs along X axis and Y axis as 25.8µs and 3.6µs 
respectively. This is why X axis localization is easier than 
Y axis. A similar conclusion can also be found in Toffee 
[48] and SoundCraft [17] since both solutions only work 

in angular estimation (similar to X-axis) instead of distance 
interpolation (similar to Y-axis). 

Based on this fact, we chose to place two different types of 
sensors along Y axis to add the extra time difference. We 
decided to use four sensors in total (two for each type of 
sensor) to reduce the error with additional information [17, 
48]. With these constraints, we have three possible sensor 
configurations (Figure 4).  

 
Figure 4: Three possible sensor configurations given that two 
different types of sensors should lie along the Y-axis. The 
topmost configuration was chosen to keep mics closer to taps. 

Our initial tests showed that the signal to noise ratio (SNR) 
of the accelerometer is larger than the SNR of the 
microphones when tapping on the surface probably due to 
higher attenuation of the signals in air. We therefore chose 
the topmost setup as our final sensor configuration. After 
investigating the common wristband sizes, we used a 
rectangular configuration, where two microphones (or 
accelerometers) are separated by 4cm and distance 
between accelerometer and microphone is set to 1.5cm.  
HARDWARE IMPLEMENTATION 
Our wristband prototype consists of two highly sensitive 
accelerometers (Model 352A24, PCB Piezotronics) and 
two MEMS microphone breakouts (INMP401, Sparkfun) 
with built-in amplifiers (gain = 67dB). Four sensors are 
situated on the bottom of the wrist with a mechanical 
structure (Figure 5(a,b,c)). 

 
Figure 5: (a, b, c) Acustico wristband, (d) External hardware. 



The accelerometers were connected to an ICP signal 
conditioner (Model 482C24, PCB Piezotronics) with a 
gain of 10. Since the TDOAs we targeted are on the order 
of microseconds, we needed a sampling rate of at least 
1MHz. We therefore used the PicoScope 2406B for 
sampling the amplified signals from both accelerometers 
and microphones and set its sampling rate to 1MHz with 
the raw data streaming into a desktop via USB. 
SOFTWARE IMPLEMENTATION 
Our software engine that detects and localizes taps was 
developed in Matlab. The software pipeline has two stages: 
First we detect whether there is a tap on the surface, and 
then we localize the tap using regression models. Our 
implementation utilizes the machine learning toolbox in 
Matlab. Once trained, our system can work in real time.  
Tap Detection 
The basic premise here is to detect surface taps by looking 
at the peaks they cause in the accelerometer signal. The 
primary challenge here is in filtering out instances when 
the user moves their wrist randomly or purposely to 
position the finger over the target before tapping. We 
describe our algorithm below and test its tolerance to such 
instances in our evaluation.  

To detect a tap, we first slice the streaming data in 0.1s 
windows. Within each window, the raw data from four 
sensors are filtered by a bandpass filter with cut-off 
frequencies of 10Hz and 1000Hz [36]. We then sum up the 
data from the two accelerometers and the two microphones 
separately. For accelerometer data, in order to distinguish 
a tap from other coarse hand movements, we search for a 
“pulse” having a stronger signal power (i.e., sum of the 
squares for each data point) than a pre-set threshold within 
a short time period (i.e., 0.01s). We pick this time period 
based on our observation of the tap signal peak length and 
it is also long enough for us to ignore the small time shift 
between each pair of sensors. To implement this, we divide 
the data within the 0.1s window into 10 pieces and 
calculate the signal power for each piece. If the power of 
one piece is higher than the threshold, and the neighboring 
pieces show a much lower power (i.e., 30% of the selected 
piece), the accelerometer requirements are satisfied. Then 
we check the microphone signal power in the exact same 
0.01s time slot. If it is also higher than the pre-set 
threshold, we assume there is a tap on the surface. The two 
thresholds for accelerometers and microphones are 
determined by a calibration process.  
Tap Localization 
We localize taps relative to the location of the wristband in 
discrete regions. Aside from precise TDOA estimation, 
another challenge for tap localization is in the inconsistent 
coupling between the accelerometers and the surface. 
When the user wears the wristband, the coupling of the 
sensors to the surface may keep slightly varying due to the 
wrist motion even while the forearm stays in the same 

location. This inconsistency makes it difficult to reliably 
calculate TDOA simply using mathematical triangulation. 

Therefore, we chose to use a machine learning regression 
model to estimate the tap’s 2D coordinate. Before we 
extract features from the raw data, we first concatenate the 
data with the data from the previous window and the next 
window to ensure that a complete tap signal is captured, 
and the same signal is not captured twice. And then we trim 
the data into 0.1 second by localizing the tap signal through 
maximum detection (i.e., only includes 0.03 second before 
the maximum of the data and 0.07 second after the 
maximum, a sufficient time slot ensuring the inclusion of 
a complete tap signal based on our observation). We use 
these data in 0.1s tap windows for feature extraction. 
Feature Extraction and Machine Learning 
Based on the findings from previous work [36, 48] and our 
initial tests, we use four different methods to estimate the 
TDOA between two signals in 0.1s tap windows: (1) time 
displacement when the cross-correlation (i.e., similarity of 
two signals as a function of the displacement of one 
relative to the other) reaches maximum; (2) time difference 
of the first peaks; (3) time difference of the maximum 
peaks; (4) time difference of minimum. In total, we feed a 
24-feature vector (4 estimate methods × 6 pairs of sensors) 
into the machine learning model for localization.   

We use Random Forest in our current implementation. 
Random Forest has previously been found to be accurate, 
robust, scalable, and efficient in many different 
applications [6, 31]. We use two independent Random 
Forest regression models (nTrees = 200) which operate in 
parallel – one for X position and the other for Y position.  
USER EVALUATION 
We ran a user evaluation to characterize the robustness and 
accuracy of our system in tap detection and localization.  
Participants 
Twenty right-handed participants (11 males, 9 females; 
23-59 years old, average age: 39.2) were recruited to 
participate in this study from our organization. The 
participants were compensated for their time.  

We marked the tap evaluation region (Figure 7, 8), which 
is a three by six grid (18 squares in total). Each square was 
a 1cm × 1cm target for participants to tap, a reasonable 
target size considering the size of the finger-pad. This tap 
evaluation region was determined based on the 
comfortable area of interaction for index finger taps given 
the comfortable limits on flexion-extension and radial-
ulnar deviation of the wrist on a surface. 
Experimental Setup 
The study was conducted using our wristband prototype 
described in implementation section. It was conducted in a 
quiet room with the participant and experimenter. Except 
for the sofa arm condition, all experiments were completed 
on a large table with enough space to place each of the four 
stools made of different materials. The experimental 



interface was shown on a 27-inch monitor, placed on the 
same table at a comfortable distance from the participant. 
Prior to the evaluation, participants were asked to wear the 
prototype on the wrist of their left hand (non-dominant 
hand). In order to control for the effect of hand movements 
on the accelerometers (e.g., the closer to the wrist, the 
larger the influence), we required participants to put the 
wristband about 2cm away from the first knuckle of the 
wrist, a common position where users would wear a watch. 
We then asked the participants to place their wrist on the 
surface along the middle line of the tap region (Figure 8) 
such that they could use their index fingers to tap at each 
corner target easily and comfortably. We recorded that 
wrist position (i.e., 14cm - 19cm to the evaluation region) 
and kept it the same throughout the duration of the study. 
Note that this is only to ensure the distances between taps 
and sensors are the same across sessions (e.g., training vs. 
testing). When being used in real time, the system does not 
require wrist or elbow to be fixed in one position.  
Evaluating Tap Detection under Noise & Wrist Motion 
For tap detection, we tested if users’ taps can be reliably 
detected in noisy environments while the hand performs 
random wrist motion between taps. Participants tapped on 
a wooden stool surface under two different noise 
conditions. Before they started, the device needed a simple 
calibration process to capture appropriate thresholds for 
both accelerometers and microphones. For the calibration, 
participants were told to tap at four corners of the tap 
region once and we used the half amplitude of the 
“lightest” tap as the thresholds. Note that we did not give 
any instruction on how to tap in this study.  

 
Figure 6: User interface that guided the user.    

After the device was calibrated, a speaker was placed near 
the stool to play two different environmental noises, city 
traffic white noise1 and ambient noise2 at 80dB to simulate 
the acoustic noises the user may encounter in their daily 
activities [53]. Under each noise, participants were 
instructed to tap at the eighteen different target squares in 
a random order following the sequence shown on the 
experimental interface (Figure 6). To investigate the effect 
of hand movements on the accelerometers, we asked the 
participants to move their wrist randomly (left-right, up-
down etc.) (without displacing their arm from its position 
on the surface) for about five seconds before they tapped. 
During the study, the experimenter manually recorded 

 
1 https://www.youtube.com/watch?v=8s5H76F3SIs 
2 https://www.youtube.com/watch?v=fuwGT88P-RU 

false positives and false negatives. The study took about 
15 minutes to complete. In total, we had 720 taps (20 
participants × 18 taps × 2 environmental noises). 
Results – Tap Detection under Noise & Wrist Motion 
We used F1 score to measure the accuracy of tap detection, 
which is defined as (2 × precision × recall) / (precision + 
recall). The F1 scores were analyzed using a one-way 
ANOVA. Violations to sphericity used Greenhouse-
Geisser corrections to the degrees of freedom.  

Overall, the average F1 score for tap detection under two 
environmental noises is 0.9987 (s.e. = 0.0003) with 
precision of 0.9988 (s.e. = 0.0004) and recall of 0.9986 
(s.e. = 0.0004). We found no significant effect of two 
environmental noises on F1 scores (F1, 19 = 0.998, p > 
0.05). The tap detection results are promising since only 
17 false positives and 20 false negatives were found 
throughout the study, which demonstrates the robustness 
of tap detection algorithm under different noise conditions. 
Study Design – Tap Localization 
For tap localization, we conducted the investigation in two 
phases. The first phase investigated tap localization on a 
wooden surface (which is one of the most common 
materials used for tables) under two independent variables: 
hand configuration and tap method. The second phase 
investigated taps on different surfaces.  

Phase 1 - Hand Configuration (One-Hand vs. Two-
Hands): We wanted to isolate the effect of wrist motion on 
the accelerometers. Thus, we investigated a Two-Hands 
configuration where participants were asked to put their 
device-worn hand on the surface and use the other hand to 
tap (Figure 7(b)). Since the device-worn hand was kept still 
when the tap occurred, the accelerometers on the bottom 
were not affected by any hand movement but only captured 
the “surface wave” propagating from the tap location. 

 
Figure 7: (a) One-Hand, and (b) Two-Hands configuration.  

Phase 1 - Tap Method (Finger-pad vs. Finger-nail): We 
considered how users tapped on the surface when they 
tapped naturally (typically using the finger-pad) or when 
they purposely tried to incorporate the fingernail in the tap. 
Based on our initial observations, we found out that using 
fingernail to tap could create a “shorter but stronger” pulse 

 



with less frequency components, which might ease the 
TDOA estimation between each pair of sensors.  

Phase 2 - Surface Material: Since surfaces made of 
different materials have different properties and wave 
propagation velocities3, we investigated the localization 
accuracy on different surfaces. We tested on four 
additional surfaces which constitute common table 
surfaces - plastic, glass and steel, and a fabric sofa arm that 
represented a non-rigid surface (Figure 8). For this 
investigation, we only looked at the Finger-pad, One-Hand 
scenario to ensure that the entire study did not exceed 90 
minutes. Including the data for the same scenario for Wood 
surface from Phase 1, we had five different surfaces. 

 
Figure 8: Five surface materials. (a) Wood, (b) Plastic, (c) 
Steel (painted), (d) Glass, (e) Fabric sofa arm. 

In summary, we had 2 tap methods (finger-pad vs. finger-
nail) × 2 hand configurations (one-hand vs. two-hands) = 
4 conditions in Phase 1, and 4 surface condition (plastic, 
glass, steel, fabric) in Phase 2. Each condition consisted of 
18 tap locations (Figure 8). Participants did four repetition 
sessions in each of the four conditions in Phase 1 and in 
each of the four conditions in Phase 2. The conditions in 
Phase 1 and Phase 2 were separately counterbalanced. In 
total, we had 8 conditions (4 Phase 1 + 4 Phase 2) × 18 taps 
× 4 sessions × 20 participants = 11520 taps. 
Study Procedure – Tap Localization 
For each test condition, the procedure was similar to the 
tap detection study. For each surface, participants were 
first asked to calibrate the device using the exact same 
process described in tap detection study. Unlike the 
detection study, no environmental noise was provided, and 
participants were not required to move their hands 
randomly before each tap. To save time, participants 
performed taps sequentially (i.e., from square 1 to 18) in 
each repetition session. When a participant’s tap was 
registered and recorded, there was a “click” sound to notify 
the participant to move to the next target. The experimental 

 
3 https://www.engineeringtoolbox.com/sound-speed-solids-d_713.html 

interface also highlighted the next tap target accordingly. 
To ensure we could collect all eighteen taps in each session 
for localization, if a tap was not detected, participants were 
instructed to tap at the same location again until it was 
registered. The experimenter recorded all false detections 
manually for later analysis. A one-minute break was given 
between repetition sessions where participants were asked 
to take off the wristband, leave the desk and walk around 
in the room [14, 28, 56]. Note that the calibration was only 
performed before the first session on each surface. The 
whole study took about 90 minutes to complete. 
Results – Tap Localization 
We present experiment results to demonstrate the accuracy 
and reliability of our system. Data were analyzed using a 
one-way ANOVA with respect to the five different surface 
different materials and a two-way repeated measures 
ANOVA with respect to tap methods (i.e., finger-pad or 
finger-nail) and hand configurations (i.e., one-hand or two-
hands) for the Wood surface. Violations to sphericity used 
Greenhouse-Geisser corrections to the degrees of freedom. 
Post-hoc tests with Bonferroni corrections were used. 
Tap Detection Performance 
We looked at the numbers of false positives and false 
negatives during the study and evaluated the tap detection 
performance. Overall, the average F1 score for tap 
detection is 0.9995 (s.e. = 3×10-5) with a precision of 
0.9999 (s.e. = 4×10-6) and recall of 0.9990 (s.e. = 6×10-5). 
There was only one false positive across the whole study. 
And 242 false negatives occurred in total because the 
participant tapped much lighter than the taps in the 
calibration process. The ANOVA yielded a significant 
effect of surface on F1 scores (F4, 76 = 7.793, p < 0.01). 
Post-hoc pair-wise comparisons revealed significant 
differences between sofa arm and all other rigid surfaces 
except for the wood surface (all p < 0.05), which indicated 
that although we achieved a F1 score as high as 0.9989 (s.e. 
= 1.6 ×10-4) for the sofa arm, it was still not as good as 
other rigid surfaces. There was also a significant effect of 
tap methods (F1, 19 = 5.589, p < 0.05) on F1-score. It 
showed that tapping with fingernail would be easier to 
detect since the received signals were “stronger and 
sharper”. We found no significant effect of hand 
configuration (F1, 19 = 3.416, p > 0.05) which indicates that 
our tap detection algorithm minimized the effect of coarse 
hand movement on the accelerometers. 
Tap Localization Performance  
Since participants’ hand sizes were different, the tap region 
in the evaluation was actually in different distances from 
the sensors on the wristband (i.e., 14cm - 19cm) among 
participants. It meant that it was not possible to create a 
cross-user model that worked for everyone, especially also 
considering the differences in how participants tapped on 
the surface. Further, as discussed before, different 
materials have different dispersion/reflection properties 



and wave propagation velocities, making it hard for the 
model to be generalized across different surfaces.    

Thus, we chose to evaluate the tap localization accuracy 
within each test condition using root-mean-square error 
(RMSE) measurement. The error was measured from the 
center of each target. We calculated the leave-one-session-
out accuracy for each participant under each test condition 
by training a model using the data from three sessions and 
testing it using the remaining session. The average RMSE 
for each participant in each test condition was calculated 
by averaging all 4 possible combinations of training and 
test data. The overall accuracy was then averaged using the 
RMSEs from all participants. 

Overall, the average RMSEs in X axis and Y axis across 
all eight tested conditions were 7.57mm (s.e. = 0.20mm) 
and 4.62mm (s.e. = 0.11mm) respectively. In particular, if 
we removed sofa arm condition, the average RMSEs 
decreased to 7.08mm (s.e. = 0.19mm) and 4.36mm (s.e. = 
0.11mm) in X axis and Y axis (Figure 9 left).  

 
Figure 9: Tap localization RMSEs for X and Y-axis for all 
conditions and when the non-rigid fabric surface is excluded 
(left); Tap localization RMSEs across all surfaces under the 
Finger-pad, One-Hand scenario (right). Error bars show ± 
SE in all figures. 

Surface. A significant effect of surface was found on the 
RMSEs for the X axis (F4, 76 = 15.088, p < 0.01) and the Y 
axis (F4, 76 = 20.307, p < 0.01) both. Post-hoc pair-wise 
comparisons revealed significant differences between sofa 
arm and other rigid surfaces (all p < 0.05) in both X axis 
and Y axis. The respective average RMSEs in X and Y axis 
were: Wood: 7.30mm (s.e. = 0.50mm), 4.54mm (s.e. = 
0.30mm); Steel: 6.47mm (s.e. = 0.46mm), 4.17mm (s.e. = 
0.25mm); Glass: 7.57mm (s.e. = 0.54mm), 4.71mm (s.e. = 
0.21mm); Plastic: 8.44mm (s.e. = 0.43mm), 5.34mm (s.e. 
= 0.17mm); Sofa Arm: 10.98mm (s.e. = 0.44mm), 6.49mm 
(s.e. = 0.13mm) (Figure 9 right). 

It was expected that we achieved the lowest accuracy on 
the sofa arm since “surface wave” propagation is more 
complicated in the non-rigid surface. Our system 
performed the best on steel surface. The reason might be 
two folds. Firstly, the steel surface is homogeneous, which 
reduces the dispersion/reflection of the “surface wave”. 
Second, taps on the steel surface create the strongest 
“sound wave” among these five materials.  

Tap methods and hand configurations. On the wood 
surface, for X axis, we found a significant effect of hand 
configurations (F1, 19 = 9.105, p < 0.01). However, no 
significant effect was found for tap methods (F1, 19 = 2.734, 
p > 0.05). As for Y axis, we found significant effects of tap 
methods (F1, 19 = 5.659, p < 0.05) and hand configurations 
(F1, 19 = 7.645, p < 0.05) both. We found no significant 
interaction effect for tap methods × hand configurations in 
both X axis and Y axis (both p > 0.05). 

The average RMSEs in X axis and Y axis when tapping 
using finger-pad were 7.06mm (s.e. = 0.35mm) and 
4.31mm (s.e. = 0.23mm) respectively while they dropped 
to 6.49mm (s.e. = 0.36mm) and 3.83mm (s.e. = 0.21mm) 
when using the fingernail to tap (Figure 10 left). Based on 
the results, for X axis location interpolation, using 
fingernail did not help but it did help Y axis location 
interpolation. One possible reason could be that tapping 
with fingernail improved the TDOA estimation between 
two different types of sensors (i.e., accelerometer and 
microphone) since the received signals from both types of 
sensors have clearer and stronger peaks.  

 
Figure 10: On the wood surface: Tap localization RMSEs for 
Finger-pad vs. Finger-nail (left); Tap localization RMSEs for 
One-Hand vs. Two-Hands configurations (right). 

For hand configurations, the average RMSEs in X axis and 
Y axis in the one-hand condition were 7.30mm (s.e. = 
0.37mm) and 4.36mm (s.e. = 0.20mm) respectively. In the 
two-hands condition, the RMSEs could decrease to 
6.25mm (s.e. = 0.32mm) and 3.78mm (s.e. = 0.23mm) 
correspondingly (Figure 10 right). From the results, we 
demonstrated that the tap localization performance could 
be further improved in two-hands configuration since the 
effect of hand coarse movements on the accelerometers 
was completely removed in this situation. With this, we 
also envision a two-hands usage scenario, which can 
support applications that might require higher sensing 
resolution and accuracy.  

Feature Importance.  Aside from the accuracy, we were 
also interested in which features played more important 
roles in localization. A weighted breakdown of merit was 
calculated using normalized Random Forest weights. First 
of all, in order to see which TDOA estimation method 
performed better in our configuration, we summed up the 



normalized weights of six TDOA features calculated by 
each method and averaged them from both axis (Figure 11 
top). It turned out that TDOAs calculated using “the time 
displacement when the cross-correlation reaches 
maximum”, contributed the most for tap localization. This 
might be because only this estimation method considered 
the complete signals from the four sensors. Second, we 
compared the TDOA features from each pair of the sensors 
in X axis and Y axis by summing up the corresponding 
weights from four TDOA estimation methods (Figure 11 
bottom). As expected, the two TDOAs calculated from the 
sensors of the same type (Acc1 – Acc2, Mic1 – Mic2) were 
more important for X axis localization, validating our 
discussion earlier. For Y axis localization, the TDOAs 
from different types of sensors (Acc - Mic) proved more 
important, which again validates our idea of using the 
propagation speeds difference in surface and air to add 
extra time difference and improve the sensing resolution. 

 
Figure 11: Feature importance for tap localization among 
the four TDOA estimation methods (top), and the six sensor 
pairs (bottom). 

With Less Training Data. We also analyzed the system 
accuracy with less training data. We still took leave-one-
session-out approach but this time we only used the taps 
from four corners in three sessions (i.e., 12 taps) to train 
the machine learning model. And we tested the model on 
the remaining sessions (i.e., 18 taps).  

Overall, with less training data, the average RMSEs in X 
axis and Y axis across all eight tested conditions increased 
to 9.64mm (s.e. = 0.18mm) and 5.79mm (s.e. = 0.08mm) 

respectively. If we removed sofa arm condition, the 
average RMSEs could decrease to 9.16mm (s.e. = 
0.16mm) and 5.63mm (s.e. = 0.08mm) in X axis and Y 
axis. These results showed that our system could still 
achieve a reasonable localization accuracy with a small set 
of training data. The amount of collected training data 
should depend on different application requirements.  
EXAMPLE APPLICATIONS 
We built four demo applications to showcase the potential 
use cases of Acustico. The first three applications show 
how Acustico can be used with AR devices (e.g., Microsoft 
HoloLens) to enrich the input expressiveness. The last 
application provides a coherent “mouse experience” by 
combining Acustico with an optical flow sensor.  

AR Applications: The first application we built is a dial pad 
for AR devices. User can simply tap at different locations 
to enter a phone number and call the person he wants to 
contact (Figure 12(a)). Similarly, we also developed a 
calculator for AR devices. User can input the numbers on 
any surfaces nearby and get the calculation results (Figure 
12(b)). Our third application is a whack-a-mole AR game. 
User can hit moles by taping on the surface, which offers 
an immersive gaming experience with corresponding 
haptic tactile feedback (Figure 12(c)). 

 
Figure 12: Demo applications. (a) Dial pad, (b) Calculator, (c) 
Whack-a-mole game, (d) Acustico with an optical flow sensor, 
(e) User taps on the right side to “right click”. 

Optical Flow + Acustico for Surface-wide Localization: 
Acustico focuses on tap localization relative to the 
wristband. We combine the Acustico with an optical flow 
sensor underneath to additionally track the forearm motion 
on the surface. This combination can be used to expand 
any of the applications demonstrated above to support tap 
localization over larger surface-wide AR interfaces. We 
further implement a mouse experience (Figure 12(e)) 
where the user simply moves his or her wrist to control the 
pointer position and taps on left/right region with respect 
to the wristband to invoke left/right click. 



DISCUSSION AND LIMITATIONS 
In this section, we discuss the insights gained from this 
work, and discuss limitations and future work. 

Active Acoustic Approach. As discussed in Related Work, 
active acoustic approach also shows potential to localize a 
finger [35, 54]. Based on the existing work, we also 
initially investigated the idea of embedding both 
transducer (e.g., speaker, actuator) and receiver (e.g., 
microphone, accelerometer) on the wristband, and tried to 
localize the finger using reflected signal. However, as also 
mentioned in FingerIO [35], we found out that it was hard 
to completely isolate the transducer and receiver within a 
small wristband form factor. The received signal would be 
largely masked by the emitted signal from the transducer, 
making it hard to separate and extract the reflected signal. 
One possible way to solve the masking problem is to 
increase the frequency of the emitted signal. To test this, 
we built a prototype using an ultrasound emitter. However, 
this presents another problem – signal attenuation. High 
frequency signals attenuate very quickly and therefore the 
received signals do not have enough SNR to make any 
reasonable inferences. The set-up therefore needed more 
power and coupling liquids which make the approach 
untenable for practical use. 

Tap Detection and Localization in Real-World Settings. 
For the tap detection, we did not evaluate the system when 
the hand is not on a surface, but vibration and sound signals 
are still detected (e.g., user’s hand hits an object or user is 
walking). This is because we assume the system is aware 
of the user’s hand being placed on a surface, which could 
be easily achieved using a proximity sensor. However, our 
threshold-based method still needs to be tested more 
intensively in the field. Another research direction would 
be exploring the effect of environmental noises on tap 
localization. While we envision Acustico to be most useful 
in indoor scenarios where the noises are limited, we are 
interested to quantify the lowest SNR for the system to 
work. Furthermore, it is also interesting to look into how 
surface properties (e.g., thickness/flatness) would affect 
system performance. We leave these for future work. 

Ecological Validity. Acustico focuses on tap detection and 
localization under the situation that the user’s wrist is 
being placed on a surface. Although we did not receive any 
negative feedback from participants, we understand that 
this requirement might introduce fatigue and be 
uncomfortable after long time use. Future research should 
be conducted in ecological validity of this approach.  

Re-calibration/Retrain for New Surfaces. Since surfaces 
made of different materials have different properties and 
wave propagation velocities, our system needs to be re-
calibrated and retrained for any new surfaces that it has not 
seen before. However, we show in the evaluation that we 
can make the training set as small as 12 taps to achieve a 
reasonable localization accuracy (X: 9.64mm error, Y: 
5.79mm error). Another possible solution is to train on the 

surfaces around the user beforehand and load the specific 
model when the user needs to interact on that surface.  

Practicality. The system we presented is an early-stage 
proof-of-concept research prototype. Although it is in a 
constrained wristband form factor similar to current wrist 
wearables in the market, more work is still needed to 
incorporate these sensors into a flexible and stretchable 
wristband. One direction to pursue in this regard is to only 
place the accelerometers under the wristband in direct 
contact with the surface and place the microphones on the 
top (in the watch-face) since they rely on in-air 
propagation. This may introduce certain inconsistencies in 
the sensor distances which could impact accuracies. 
Moreover, to capture the small TDOAs, we sampled the 
data in 1MHz, which is not supported in most of current 
wrist wearable devices due to their limited computational 
resources and batteries. But we believe this is not 
impossible as technology advances (e.g., ADS8330 from 
TI can sample at 1MHz and only consume 21mW). Plenty 
of engineering efforts would be necessary to fully embed 
this technique into commercial wrist wearable devices.  

System Evaluation. We evaluated the system using a 
region-based approach since Acustico mainly focuses on 
discrete tap detection and localization. We plan to 
investigate how to use this technique to facilitate 
continuous position tracking or gesture-based sensing in 
our future work. To ensure the studies can be completed in 
90 minutes, participants were asked to perform taps 
sequentially in each session, which might reduce the wrist 
movement between taps. Evaluation in random tap 
locations might need to be included in the future.  

Finger-up Detection. The mouse demo enables clicking on 
targets. However, Acustico only detects the finger-down 
event which produces the acoustic waves but not the 
finger-up event since it does not produce any acoustic 
waves. The detection of this release event will enable a 
dragging state in the mouse [5] and is an interesting 
challenge for wrist-based sensing. 
CONCLUSION 
This paper presents a passive acoustic sensing approach for 
wrist-worn devices to detect and localize tap. We discuss 
the sensing principle and our investigation on different 
sensor configurations. We built a wristband prototype with 
four acoustic sensors including two accelerometers and 
two microphones. Through a 20-participant study, we 
demonstrate that our system can reliably detect taps with 
an F1-score of 0.9987 across different environmental 
noises and yield high localization accuracies with root-
mean-square-errors of 7.6mm (X-axis) and 4.6mm (Y-
axis) across different surfaces and tapping techniques. Our 
work presents a novel sensing methodology for always-
available input on any unmodified surface. We believe it 
holds the potential to further enrich the input 
expressiveness of today’s computing devices (e.g., 
wearables and AR devices). 
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