CrossMotion: Fusing Device and Image Motion for User
Identification, Tracking and Device Association

Andrew D. Wilson and Hrvoje Benko
Microsoft Research
Redmond, WA 98052 USA
awilson@microsoft.com, benko@microsoft.com

Figure 1. CrossMotion matches phone device acceleration with accelerations observed in the infrared and depth images of the Kinect
v2 camera. (a): the phone’s acceleration is calculated in the Earth’s coordinate frame, shown by the axis; (b) CrossMotion finds the
phone held by the user (red marker); (c) image and device acceleration match image (darker is better); (d) toys and other objects can
be tracked by embedding or attaching the device (the device itself does not need to be directly visible to the camera).

ABSTRACT

Identifying and tracking people and mobile devices indoors has
many applications, but is still a challenging problem. We introduce a
cross-modal sensor fusion approach to track mobile devices and the
users carrying them. The CrossMotion technique matches the
acceleration of a mobile device, as measured by an onboard internal
measurement unit, to similar acceleration observed in the infrared
and depth images of a Microsoft Kinect v2 camera. This matching
process is conceptually simple and avoids many of the difficulties
typical of more common appearance-based approaches. In
particular, CrossMotion does not require a model of the appearance
of either the user or the device, nor in many cases a direct line of
sight to the device. We demonstrate a real time implementation that
can be applied to many ubiquitous computing scenarios. In our
experiments, CrossMotion found the person’s body 99% of the time,
on average within 7cm of a reference device position.

Categories and Subject Descriptors
1.4.8 Image Processing and Computer Vision: Scene Analysis —
Sensor Fusion, Tracking

Keywords

Sensor fusion; depth cameras; inertial measurement units

1. INTRODUCTION

Tracking a mobile device and its owner is useful for a number of
ubiquitous computing scenarios that rely on identifying and tracking
the device’s owner to provide location-based services, such as
connecting the smartphone with nearby infrastructure such as a wall
display. In this paper we consider the problem of tracking a mobile
device user with a video camera.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

ICMI '14, November 12 - 16 2014, Istanbul, Turkey

Copyright 2014 ACM 978-1-4503-2885-2/14/11...815.00
http://dx.doi.org/10.1145/2663204.2663270

216

Recognizing and tracking mobile devices from video is difficult for
a number of reasons. Many smartphones are small, shiny, and dark,
making them difficult to image clearly. It might be impossible to
differentiate two devices of the same model. Handheld devices may
be partially occluded by the hand, while those kept in a purse or
clothes pocket can’t be seen at all. Active markers such as infrared
LEDs can assist in tracking and identification [16]. For example,
Xbox One and Sony PS4 controllers use infrared and visible LEDs
to assist in tracking and associating controllers with players.
However, such active markers are rare, and require a line of sight.

We present a sensor fusion approach to locating and tracking a
mobile device and its user in video. CrossMotion matches device
acceleration with acceleration observed in the infrared and depth
images of the Kinect camera (Figure 1). It uses the inertial sensors
common to many mobile devices to find device acceleration. Device
and image accelerations are compared in the 3D coordinate frame of
the environment, thanks to the absolute orientation sensing
capabilities common i today’s smartphones, as well as the range
sensing capability of commodity depth cameras.

Previous works ([4], [13], [15], [11]) explore the fusion of device
sensors and visual features to find the user carrying the device.
These rely on external means of determining candidate objects in the
video. For example, ShakelD considers which of up to four tracked
hands holds the device. Rather than compare the motion of a small
number of candidate objects in the video, CrossMotion sensor
fusion is performed at every pixel in the video image and requires no
separate process to suggest candidate objects to track. The technique
requires no knowledge of the appearance of the device or the user,
thereby avoiding many of the difficulties of traditional appearance-
based approaches, and allows for a wide range of camera placement
options and applications. An interesting and powerful consequence
of the technique is that the device user, and in many cases the device
itself, may be reliably tracked even if the device is in the user’s
pocket (Figure 4), or embedded in another object (Figure 1d).

In this paper, we review related work, detail the CrossMotion
algorithm, discuss our implementation, present the results of two
evaluations of the algorithm’s performance, and discuss
considerations and limitations in applying the technique.



2. RELATED WORK

2.1 Device Association Using Sensor Fusion
“Sensor fusion” refers to the combination of multiple disparate
sensors to obtain a more useful signal. Of particular relevance to the
present work are fusion techniques that seek to associate two
devices by finding correlation among sensor values taken from both.
For example, when two mobile devices are held together and
shaken, accelerometer readings from both devices will be highly
correlated ([3], [7]). Detecting such correlation can cause
application software to pair or connect the devices in some useful
way. Similarly, when a unique event is observed to happen at the
same time at both devices, various pairings may be established.
Perhaps the simplest example is connecting two devices by pressing
buttons on both devices simultaneously [10], but the same idea can
be applied across a variety of sensors. For example, two devices that
are physically bumped together will measure acceleration peaks at
the same moment in time. Hinckley et al. [2] refers to these
interactions as “synchronous gestures.”

It can be particularly useful to establish correlations across very
different modalities, since often such modalities complement each
other. We mention just a few of these “cross-modal” approaches: a
mobile phone may be located and paired with an interactive surface
by correlating an acceleration peak in the device with the
appearance of a touch contact [12], or when the surface detects the
visible flashing of a phone at the precise moment it is triggered [18].
An object tagged with an RFID chip can be detected and located as
it is placed on an interactive surface by correlating the appearance of
a new surface contact with the appearance of an RFID tag [8].

2.2 Correlating Image and Device Motion

A small number of previous works investigate the idea of correlating
mobile device inertial sensor readings with movement observed in a
video camera.

Kawai et al. [4] propose correlating accelerometers worn at the
waist with visual features to track young children in school. They
consider tracking head-worn red LEDs, as well as tracking the
position of motion blobs. For the accelerometer measurements, they
consider integrating to obtain position for direct comparison with the
visual tracking data, as well as deriving pedometer-like features.
While the paper lacks specifics, the authors favor pedometer
features in combination with markerless motion blob visual features.

Shigeta et al. [13] propose computing normalized cross-correlation
between the motion trajectory of an object and device accelerometer
readings to determine which of several tracked objects contains the
device. Their approach requires a window of many samples to
perform correlation and relies on an external process to find and
track objects from monocular video. Pltz et al. [9] use a similar
approach to synchronize inertial sensors and video cameras.

Teixeria et al. [15] propose identifying and tracking people across
multiple existing security cameras by correlating mobile device
accelerometer and magnetometer readings. They describe a hidden
Markov model-based approach to find the best assignment of sensed
devices to tracked people. As with Shigeta et al., they rely on an
external process to generate tracked objects and use a large
matching window, though they demonstrate how their approach can
recover from some common tracking failures.

Most closely related to the present work is Rofouei et al.’s ShakeID
system, which matches smartphone accelerometer values with the
acceleration of up to four hands tracked by the Microsoft Kinect
sensor [11]. The hand holding the phone is inferred by matching the
device acceleration with acceleration of hand positions over a short

217

window of time (1s). A Kalman filter is used to estimate the
acceleration of each hand. The hand with the most similar pattern of
acceleration is determined to be holding the device. This previous
work further studies the correlation of contacts on a touch screen by
the opposite hand. Ultimately touch contacts are associated with the
held device by way of the Kinect tracked skeleton that is seen to be
holding the device.

All of the above previous works require that a small number of
candidate objects are first tracked. The subsequent correlation
process involves determining which of these object’s motion most
closely matches that of the device. The step of generating candidate
objects can be prone to failure. For example, ShakeID compares the
motion of the tracked hands of the one or two users detected by the
Kinect sensor skeletal tracking process. If the device is not held in
the hand, or if the Kinect skeletal tracking fails, the device cannot be
tracked. Furthermore, holding a mobile device can impact the hand
tracking process to an extent that estimating hand acceleration
robustly is difficult. Kinect skeletal tracking requires a fronto-
parallel view of the users. Thus relying on Kinect skeletal tracking
constrains where the camera may be placed. For example, skeletal
tracking fails when the camera is mounted in the ceiling for an
unobstructed top-down view of the room.

In comparison to previous work, CrossMotion avoids the difficulty
of choosing candidate objects by matching low level motion features
throughout the image. It may be used in many situations where
skeletal tracking is noisy or fails outright and thus can be used in a
wide variety of application scenarios. Whereas most of the related
work performs matching over a significant window in time,
CrossMotion uses a fully recursive formulation that relies on storing
only the previous frame’s results, not a buffer of motion history. In
fact, the recursive nature of the computation allows it to be applied
everywhere in the image in real time, avoiding the need to track
discrete objects.

We argue that to correlate image and device motion for the purposes
of locating the device or the user carrying it, the best approach is to
match image motion directly, since as with “synchronous gestures”
the pattern of image motion will provide the discriminative power to
robustly detect the device or its user. Making fewer assumptions
about the appearance of the device or user extends the range of
applicability of the approach, and makes the technique less complex,
more robust, and ultimately more useful.

We take some inspiration from models of visual search which
feature a pre-attentive, massively parallel processing stage in which
low level features are computed across the visual field, to be
selected by further higher-level top-down processes [19]. For
example, a pedestrian can detect interesting motion in the periphery,
such as a car approaching a crosswalk, even on a windy day where
the visual scene is full of motion.

Maki et al. [S] and Stein et al. [14] similarly propose matching
trajectories of a set of features tracked using optical flow. Trajectory
acceleration magnitude is compared to device acceleration
magnitude to find the closest matching trajectory. These previous
works require that the tracked points be periodically resampled to
maintain even distribution throughout the image. Maki et al.
demonstrates tracking 512 points, while our recursive approach uses
optical flow rather differently, considering all pixel locations in the
image without relying on a set of proposed features, effectively
tracking a few hundred thousand points. Furthermore, these
previous works compare acceleration magnitude which is invariant
to orientation. CrossMotion instead uses the full 3D acceleration in a
known coordinate frame, and thus avoids many simple scenarios
that lead to false matches when using only acceleration magnitude



(e.g., a motion to the left will have the same acceleration magnitude
as a similar motion to the right).

3. CROSSMOTION ALGORITHM

The CrossMotion algorithm matches device (e.g., smartphone)
acceleration with acceleration observed in the infrared and depth
images of the Kinect camera (Figure 1). This matching process is
performed at each pixel in the infrared image (Figure 1c). By virtue
of the absolute orientation sensing available on the smartphone and
the ability to determine the 3D position of an observed point in the
Kinect color image, the match is performed in a common 3D
coordinate frame (world reference frame).

In this paper, we present results using the Kinect for Windows v2
sensor, which includes a time of flight depth camera. Other depth
sensors may also be used. For example, we have a CrossMotion
implementation that uses the first Kinect for Windows sensor which
is based on a structured light depth sensor.

The algorithm may be summarized as:

1. Find device acceleration: During runtime, mobile device
acceleration is continually transmitted to a host PC (Figure 1a).

2. Find image motion: Simultaneously, dense optical flow is
computed on the Kinect infrared image (Figure 2a). Each flow
vector is converted to a 3D motion using the depth image, and
transformed to the coordinate frame of the mobile device.

3. Estimate image acceleration: 3D acceleration is estimated by a
Kalman filter at each point of the image, with the 3D flow at the
point provided as input (Figure 2b).

4. Match device and image accelerations: The difference between
image and device acceleration is computed at each pixel in the
Kinect infrared image (Figure 2cd). Small values indicate the
possible presence of the device at those pixel locations.

We next describe each of the above steps in detail.

Figure 2. Stages of the CrossMotion algorithm: (a) dense optical
flow is computed from the infrared image; (b) per-pixel
acceleration estimates using Kalman filter; (c) instantaneous
match image (darker is better) and (d) filtered match image.

3.1 Device Motion

Many mobile device APIs offer real time device orientation
information. Today orientation is computed by combining
information from the onboard accelerometers, gyroscopes and
magnetometers. Because this orientation is with respect to magnetic
north (as measured by the magnetometer) and gravity (as measured
by the accelerometer, when the device is not moving), it is often
considered an “absolute” orientation. In the work reported in this

218

paper, the mobile device reports orientation in a standard “ENU”
(east, north, up) coordinate system. While magnetic north is
disturbed by the presence of metal and other magnetic fields present
in indoor environments, in practice it tends to be constant in a given
room. For our purposes it is only important that magnetic north not
change dramatically as the device moves about the area imaged by
the Kinect sensor.

Mobile device accelerometers report device acceleration in the 3D
coordinate frame of the device. Having computed absolute
orientation using the magnetometers, gyros and accelerometers, it is
casy to transform the accelerometer outputs to the ENU coordinate
frame and subtract acceleration due to gravity. Of course, the
accuracy of this estimate of device acceleration in the ENU
coordinate frame is only as good as that of the orientation estimate.
While many smartphone SDKs include functions to report absolute
orientation, for reasons explained later we implement our own
algorithm.

Our prototype implementation of CrossMotion transmits this device
acceleration (ENU coordinates, gravity removed) over WiFi to the
host PC that performs sensor fusion.

3.2 Image Motion

The CrossMotion algorithm compares the 3D acceleration of the
mobile device with 3D acceleration observed in video. Our
approach to find acceleration in video is to first compute the velocity
of movement at every pixel in the Kinect infrared image using a
standard optical flow technique. This 2D image-space velocity is
augmented with depth information and converted to velocity in real
world 3D coordinates (meters per second). Acceleration is estimated
at each point in the image using a Kalman filter. We next describe
each of these steps in detail.

3.2.1 Finding 2D Velocity with Optical Flow

Rather than track the position of a discrete set of known objects in
the scene, image motion is found by computing dense optical flow
on the entire Kinect infrared image. Dense optical flow algorithms
model the motion observed in a pair of images as a displacement
u, v at each pixel. There are a variety of optical flow algorithms.
Our prototype implementation uses the algorithm proposed by Brox
et al. [1], which is known for its accuracy. While optical flow is
typically used to compute the motion forward from time t — 1 to the
frame at time ¢, for reasons explained later CrossMotion computes
flow from the current frame at time t to the frame at time t — 1. The
velocity u, v at each point x, y we denote as u,, and v, ,,. We note
that x, y are integer-valued, while u, v are real-valued.

3.2.2 Converting to 3D Motion

Depth cameras such as the Microsoft Kinect sensor report distance
to the nearest surface at every point in its depth image. The
Microsoft Kinect for Windows v2 SDK provides an API to compute
the 3D position of a point in the depth camera in real world units
(meters). We denote the 3D position corresponding to a 2D point
x,y in the infrared image at time t as Zy ;-

Rather than convert 2D velocities (as computed by optical flow) to
3D quantities directly, CrossMotion uses a Kalman filter-based
technique that estimates velocity and acceleration at each pixel.

3.2.3 Estimating Acceleration

CrossMotion uses a Kalman filter to estimate acceleration of
moving objects in the image. The Kalman filter incorporates our
knowledge of sensor noise and is recursive (that is, it incorporates
all previous observations). The technique thus allows much better
estimates of acceleration compared to the approach of using finite



differences. While it is beyond the scope of the paper to fully
explain the Kalman filter (see [17] for a good introduction), we
attempt to describe the basics of the technique by way of explaining
the particular formulation used in CrossMotion.

The Kalman filter is closely related to the simpler “exponential”
filter which computes a smoothed estimate x;, of a scalar z, using
the recursive relation:

Xe = Xp—q + a(ze — Xxp_q)

where the gain a € (0,1) controls the degree to which the filter
incorporates the “innovation” z, — x;_;. The smaller the gain, the
less the filter follows the observation z;, and the more the signal is
smoothed. An improved version of the exponential filter is

xe = x{ + a(z; — x{)
where x; is a prediction of x; given x,_; (for example, by assuming
constant velocity). The Kalman filter is essentially this “improved”
exponential filter, and moreover includes a principled means to set
the value of the gain given our uncertainty in both the prediction
x¢ and observation z;.

For our problem of estimating acceleration from image motion, we
first consider the motion of a single object in 3D. The familiar
equations of motion predict the object’s position x;, velocity v; and
acceleration a; from previous values, X;_1, V;_1, and a,_1:

1
X; = X¢q + Ve At + Eat_lAtz

Vi = Vi1 +a,_1At
o —
A = Apq

Given observation z; of the 3D position of a tracked object, we
correct the predictions of position, velocity and acceleration with

X¢ = X; + Ky (2, — X7)

ve = v + Ky x (2, — x7)

a = a; + kg * (2, —xp)
where * denotes element-wise multiplication. Kalman gains k., k,,,
k, relate the innovation, or error in the prediction of position, to
changes in each of our estimates of position, velocity and
acceleration. Kalman gain is computed as described in [17], and is
related to our uncertainty in our predictive model x; and
observations Z;. In particular, it is crucial to assign a high
uncertainty to our estimate of acceleration a, to reflect our belief
that acceleration of the object varies over time (indeed, this is the

quantity we wish to estimate). Similarly, our uncertainty in z, is
related to the noise of our sensor.

Finally, we note that the usual formulation of Kalman gain is time-
varying. However, if the uncertainty of our predictive model and
observations is constant, Kalman gain converges to a constant value
[17], as presented above. This leads to a simplified implementation
of the update equations, and further underscores the relationship
between the Kalman filter and the simpler exponential filter.

3.2.4 Incorporating Flow

CrossMotion maintains a Kalman filter of the form described above
to estimate 3D acceleration at each pixel location in the image. We
denote our estimated position, velocity and acceleration at each
pixel location X,y as Xy, ;, Vx .y and a, ,, » respectively.

Optical flow information is used in two ways: first, the flow at a
point in the image is a measurement of the velocity of the object
under that point. It thus acts as input to our estimate of acceleration
using the Kalman filter. Second, we can use flow to propagate

219

motion estimates spatially, along patches of the image whose
motion is being estimated. In this way the Kalman filter can use
many observations to accurately estimate the acceleration of a given
patch of an object as it moves about the image.

Flow quantities u, ,, and v,,, (which we abbreviate as u and v) are
incorporated by predicting X}, Vyy., and ay,. from
Xyruy+vt—10 Varuy+vt—1> 804 @y y4pe-1 Using the equations of
motion as above. In practice, Xy y ¢, Vyy,: and a,,,; are stored as a
2D array the same dimension as the Kinect infrared image, but
because x +u and y + v are real valued, quantities Xy 4y y1v,c-15
Viruy+vi—1> aNd @xpy 1y q are best computed by bilinear
interpolation on the 2D array. Finally, observation zy,,, is simply
the 3D world coordinate position at image coordinates x, y. In this
process, the Kalman filter at x, y updates motion estimates found at
x + u,y + v in the previous time step, and motion estimates follow
along or “track” the objects whose motion is being estimated.

This interpolation finally motivates computing optical flow in
reverse fashion, from time ¢ to time ¢ — 1: u,,, and v,,, are defined
for all integer values x, y. Computing flow in the usual fashion from
time t — 1 to time t might leave some pixels without “predecessors”
from the previous frame, even if previous motion estimates are
distributed across multiple pixels using bilinear interpolation.
Computing flow from time t to time t — 1 avoids this problem.

3.3 Sensor Fusion

3.3.1 Common Coordinate System

In the following, we describe a one-time calibration procedure
which obtains the camera’s orientation with respect to the ENU
coordinate frame of the mobile device. Motion observed in the
camera may then be transformed to ENU coordinates and compared
to device accelerations directly.

While there are many ways to compute the relative orientation of the
Kinect camera to the coordinate system used by our mobile device,
we adopt a straightforward semi-automatic procedure that is easy to
implement and gives good results. First the mobile device is placed
display-side down on a plane that is easily observed by the Kinect
camera, such as a wall or desk. Viewing the color video stream of
the camera, the user clicks on three or more points on the plane.

The 3D unit normal n; of the plane in Kinect coordinates is
computed by first calculating the 3D position of each clicked point
and fitting a plane by a least-squares procedure. The same normal
n,, in ENU coordinates is computed by rotating the unit vector z
(out of the display of the device) by the device orientation.
Similarly, gravity unit vector g in camera coordinates is taken from
the 3-axis accelerometer built in to the Kinect sensor. Gravity g,, in
the ENU coordinate frame is by definition - z.

The 3X3 rotation matrix Myjpectoworla that brings a 3D camera
point to the ENU coordinate frame is calculated by matching the
normals n; and n,,, as well as gravity vectors g, and g,,, and
forming orthonormal bases K and W by successive cross products:

ky
_ _ DEXgk _ _

k; =ni, k; = Texgl? 3 = Mk xk;, K= [k,

k3
wi

ny, Xg
w; =1, W, =M,w3 =n, Xw, W=|[W;
W3
—_ r-1
Mkinect—>world = KW



While this procedure uses a mobile device to place the Kinect
camera in ENU coordinates, we note that this calibration need only
be performed once when the camera is mounted. An unfamiliar
device will work with the system without further calibration as long
it also reports orientation in ENU coordinates.

3.3.2 Matching

3D image accelerations are estimated at each pixel and transformed
to the ENU coordinate system as described above. The acceleration
observed at each pixel may be compared directly to the device
acceleration d;:

Tyt = ”ax.y.t - dtllz

Regions of the image that move with the device will give small
values of 7y, ;. In particular, the hope is that pixels that lie on the
device will give the smallest values (Figure 2c). If we assume that
the device is present in the scene, it may suffice to locate its position
in the image by finding x*, y* that minimizes 7, ,, . However, other
objects that momentarily move with the device, such as those rigidly
attached (e.g., the hand holding the device and the arm) may also
match well.

In practice, locating the device by computing the instantaneous
minimum over 7y,. will fail to find the device when it is
momentarily still or moving with constant velocity. In these cases
device acceleration may be near zero and so matches many parts of
the scene that are not moving, such as the background. We address
this by smoothing 7,,,, with an exponential filter to obtain sy, ;.
This smoothed value is “tracked” using optical flow and bilinear
interpolation, in the same manner as the Kalman motion estimates
(Figure 2d). Small values over the smoothed value sy, . Will pick
out objects that match device acceleration over the recent past
(depending on smoothing parameter «) and “remember” the
moments when some non-zero device acceleration uniquely
identified it in the image. In the case where the device stops moving,
the small values sy, , will stay with the device for some time,
hopefully until the device moves again.

Our current implementation takes a further optional step to avoid the
problem of matching static backgrounds by adding a small penalty
to pixel locations that exhibit little motion.

An important consideration in performing the above matching
process is that the latency of the Kinect sensor is much greater than
that of the mobile device, including WiFi communications. Without
accounting for this difference, the measure of similarity 75, ; will be
inaccurate. CrossMotion accounts for the relative latency of the
Kinect sensor by artificially lagging the mobile device readings by
some small number of frames. In our prototype implementation this
lag is tuned empirically to five frames, approximately 80ms.

Figure 3 shows a typical trace of device acceleration and image
acceleration at x*, y*. Considering that these values are computed in
very different ways, they track each other surprisingly well.

In some applications it may not be appropriate to assume that the
device is in the scene. For example, the user holding the device may
leave the camera’s field of view. In this case the minimum value
over Sy . can be checked against a threshold to reject matches of
poor quality. We denote the minimum value at x*, y* as s*.

4. IMPLEMENTATION

Our prototype implementation of CrossMotion uses a Microsoft
Kinect for Windows v2 sensor and a Nokia Lumia 920 running
Windows Phone 8. Device acceleration and orientation information

220

is transmitted to a host PC over WiFi at a rate of approximately
50Hz. The Kinect camera is configured using the Microsoft Kinect
for Windows v2 Developer Preview SDK to acquire infrared and
depth images at resolution 512x424 at 30Hz. CrossMotion uses the
Brox optical flow API in OpenCV 2.4.7. This optical flow
implementation uses the GPU to achieve real time performance, and
is written in Nvidia’s CUDA GPU programming language. Our host
PC runs Windows and includes an Nvidia GeForce GTX 660Ti
graphics card hosting CUDA 5.5.

All image processing runs at 30Hz. Optical flow calculations are
performed on the full resolution infrared image. Per-pixel Kalman
filter updates and sensor fusion matching is implemented in CUDA.
Optical flow parameters (e.g., smoothness) and Kalman filter
parameters (sensor noise and process noise) are derived empirically.

device and image acceleration, X

device acceleration, X
s image accelggation, X s

acceleration, g
o

device and image acceleration, Y

device acceleration, Y
image acceleration, Y

acceleration, g
o
T

device and image acceleration, Z

device acceleration, Z
image acceleration, Z

acceleration, g

15 2 25 3
time, seconds

Figure 3. Device acceleration compared to image acceleration at
the point x*, y* in each of the coordinate axes. The device was
held in by the user and moved back and forth. Note how device
and image acceleration track each other closely.

4.1.1 Computing Orientation

Today’s mobile devices combine gyros, accelerometers and
magnetometers to compute absolute orientation. Gyros measure
angular velocity and are used to provide fast, accurate updates to
orientation, while the noisier magnetometers and accelerometers are
used to take observations of magnetic north and gravity. The
absolute orientation information in the observations of magnetic
north and gravity is applied to gradually remove the inevitable drift
encountered when using gyros alone. Accelerometers measure the
direction of gravity only when the device is motionless. Thus, if the
device is undergoing significant motion, the orientation estimate
may be distorted for some time. We find that when using the built-in
Windows Phone 8 API for orientation, orientation estimates are
disrupted by vigorous motion, and several seconds are required to
recover. Because CrossMotion relies on accurate orientation
information to transform accelerometer outputs to the ENU



coordinate frame, when using the built-in API vigorous motion
causes CrossMotion fusion to fail for a few seconds.

Our own implementation of an algorithm to compute absolute
orientation allows us to make trade-offs that differ from the built-in
implementation. Our implementation opts for near instantaneous
drift correction when the device is deemed motionless, and
otherwise performs updates to the orientation estimate using the
gyro running at 250Hz.

5. EVALUATION

CrossMotion may be useful in applications where the user interacts
with a large display using speech and gesture, or with a phone
application that is connected with the display. In these settings it
may be valuable to know the identity of the user, their location in
front of the display, and possibly the location of the device.

To evaluate CrossMotion’s performance we considered two
particular modes of use that may be useful in interacting with large
displays by mobile device: gesturing towards the display while
holding the device in the hand, and wearing the device in a pocket
while moving about in front of the display.

5.1 Experiment 1: Gesturing with the Device

In our first experiment, we tested CrossMotion’s ability to track the
mobile device as the user gestures in a front display, holding the
device in the moving hand. This configuration approximates how a
user might interact with a remote display application by gesturing
with the device. As we are interested to see if CrossMotion
performance is impacted by increasing distance from the camera, we
varied the participants’ distance to the display. In a second set of
trials we introduced a distractor user (one of the experimenters)
which did their best to mimic the motion of the participant. This was
repeated for each distance condition, giving a 2X2 design with
distance and the presence of a distractor as experimental conditions.
For the purposes of this study we take as ground truth the output of
the Kinect SDK body tracking, which includes the 3D position of
the hands, hip and middle of the spine.

5.1.1 Procedure

We solicited five adult participants (one female, four male) from the
authors’ institution. All were right-handed and were familiar with
using smartphones.

Participants were instructed to stand on a marked spot on the floor
1.5m from the display (near condition) or 2.5m from the display (far
condition), and were directed to attend to the display, a 24” LCD.
The Kinect camera was mounted above the display, about 180 cm
above the floor, to observe the area in front of the display. An
experimenter instructed the participant to hold the device in their
right hand, orienting it so that it is approximately vertical, with the
smartphone’s screen facing them.

The experimenter explained the following set of trials, repeated for
each distance condition: a letter was shown on the display for four
seconds. During that time, the participant was instructed to “draw”
the letter with the device by moving the device in the space in front
of their body, and to finish approximately in four seconds. This
duration was conveyed by a progress bar animation which finished
at the end of four seconds. At the end of four seconds the screen was
blanked. After a three second pause, during which time the
participant was instructed to return to a comfortable center position
in front of their body, another letter was presented. After a few
practice trials, the participant performed the same task for each of
the unistroke letters in the alphabet (17 letters, e.g., B, C, D, etc.).
We note the letter stimulus was employed to merely cause the user
to exhibit a variety of gestures, not to test letter recognition.

221

Participants were told that the order of strokes in performing the
letter gestures was unimportant.

This set of trials was repeated but with the introduction of a
distractor user (one of the experimenters) who did their best to
mimic the precise motion of the participant. This distractor stood
next to the participant and performed the same letter in the same
stroke order, and at the same pace. This second set of trials was
included to test the performance of CrossMotion in the presence
other people, as well as give an initial indication of how easy it is to
“spoof” a user’s motion.

During every CrossMotion frame, including pauses, software logged
the 3D position corresponding with the algorithm’s best match as
well as the right hand joint position returned by the Kinect SDK
body tracker. Software also logged whether the position of
CrossMotion’s solution x*,y* lies on the participant’s body as
determined by the Kinect SDK’s “body index” image.

5.1.2 Results

Across all trials, of the 76,296 video frames (about 41 min), 1,629
frames (2.1%) occurred when the WiFi connection from the mobile
device dropped temporarily. Of the rest, 98.9% correctly placed
x*,¥* on the participant’s body. Taking the right hand position as
ground truth, average error in 3D was 6.9cm (s.d. = 11.6cm).
Position error in the “near” condition was 6.5cm (s.d. = 8.7cm),
while error in the “far” condition was 7.4cm (s.d. = 14cm). The
increase in error in the “far” condition may be attributed to one
participant in that condition. We suspect that in that trial the
magnetometer had fallen out of calibration. In any case, there is no
reason to suspect that the difference in near and far is statistically
significant. CrossMotion never placed its solution on the distractor
user, thus the distractor condition had no effect on the results, and
we do not report them separately.

5.2 Experiment 2: Wearing the Device

In the second experiment, we tested CrossMotion’s ability to
reliably pick out the person carrying the phone; i.e., does x*,y™* lie
on the user’s body. We are also interested to see if CrossMotion can
further locate the device on the person. In many circumstances we
might not expect to be able to locate the device, since, as noted
earlier, CrossMotion does not track the device, but instead finds
regions of the image which are consistent the motion of the device.
Thus parts of the user’s body which are rigidly attached to the
device may match as well as locations on the device itself.

We consider two locations of the device on the body: hanging from
a lanyard hung around the user’s neck, and placed in the right front
pocket of a jacket. These positions were selected because they both
have good analogues in Kinect’s body tracking outputs: the lanyard
position matches well with the “middle spine” position, while the
jacket pocket corresponds well with the “right hip” position. We
used the same participants as in the first experiment.

5.2.1 Procedure

The placement of camera and display was the same as in the first
experiment. In the “middle spine” condition, the phone was placed
in a wearable lanyard-style badge holder, of the kind sometimes
used at conferences. In the “right hip” condition, the phone was
placed in the right front pocket of a light fleece jacket. In both
conditions, the participant was instructed to move to any one of four
markers on the floor when the remote display indicated, but to do so
in way that they continually faced the remote display. Two of the
markers were the same used in the first experiment, while two more
were located at distance of 2m from the display, but at a distance of
0.5m on either side of the line connecting the first two points. The



four markers thus formed a diamond shape. The participant moved a
total of 34 times in a session (4 seconds between each move).

Software logged the same information as in the first experiment,
except rather than logging the right hand position returned by the
Kinect SDK, the right hip and middle spine positions were logged.

5.2.2 Results

Across all trials, of the 43,060 video frames (about 24 min)
analyzed, 1,352 frames (3.1%) occurred when the WiFi connection
from the mobile device dropped temporarily. These frames can be
considered invalid. Of the rest, 99.0% correctly placed x*,y* on the
participant’s body. Considering “middle spine” and “right hip”
positions together, average error in 3D was 20.5cm (s.d. = 14.3cm).
Position error in the “middle spine” condition was 17.1cm (s.d. =
7.8cm), while error in the “right hip” condition was 23.9cm (s.d. =
20.7cm). The results suggest a trend of larger error for the right hip,
which is consistent with informal observation of the system in
observation. In part this may be explained by the inherent lack of
agreement between our choice of ground truth (Kinect SDK tracked
body points) and the actual position of the device. In fact, if we
examine the average error as a 3D vector quantity we see that much
of the error is in the z coordinate, consistent with the fact that the
device is worn outside the body, while the body skeleton reported by
Kinect typically lies inside the body.

Comparing average error in position across both experiments, we
note that error in the second experiment is greater than that of the
first. This is unsurprising, since (as discussed in the next section) a
smaller moving object more precisely indicates position than a large
rigid moving object. In fact, we are pleasantly surprised at how well
the device is tracked when it is worn.

5.3 Discussion

While CrossMotion does not require an appearance model of the
device, in order to detect and track the user it requires that the
camera have a line of sight to some part of the user that moves with
the device. Contrast this with other vision-based approaches that
require observing the device directly. Our example sequences
demonstrate that the technique will often track the person holding
the device if the device is in the user’s shirt pocket or pants pocket
(Figure 4). In these cases CrossMotion finds objects that move
precisely with the device. This behavior may be appropriate for
applications that require tracking at the level of the user. In those
cases placing the point x*,y* anywhere on the user would be a
positive match.

Furthermore, our examples show that CrossMotion often finds the
position of the device itself, even if it is not directly in view. This
ability requires that the device motion is unique against the
background of the rest of the motion in scene, at least periodically.
While our initial experiments are promising examples of where this
is often true, it will require more work to show that this works
generally since it depends on the surrounding context of motion. For
example, the ability to localize the device on the user’s leg when it
is in their pants pocket depends in part on the leg’s occasionally
moving differently than the torso. Conversely, when holding the
device it is not uncommon for it to find some part of the arm holding
the device (however, we are surprised by the system’s ability to find
the phone in the user’s shirt pocket, since it would seem that any
point on the torso should match equally as well).

By the same token, because it matches device motion to image
motion, CrossMotion cannot initially detect the mobile device if it
does not move. If the device is being held by its user, it is likely that
even a slight motion of the user is enough to establish reliable

222

tracking, but if the device is lying on a desk, CrossMotion will not
be able to detect it against a static background.

Our initial experiments show that a simple threshold on the value of
s* is not enough to reliably determine if the smartphone is in the
view of the camera or off camera. By inspecting some test
sequences, it seems that this is primarily because during moments
when the user is not moving, static parts of the physical environment
imaged by the camera can sometimes give good matches. In our
own experiments we have been reluctant to add application-specific
heuristics to the basic localization algorithm to address this problem.
Partly, this is to investigate the power of the simplest version of the
algorithm. However, we note that there are a number of pre-
processing steps that would be reasonable to incorporate in a
production version of CrossMotion. For example, the static
background could be modeled and removed from consideration.
Similarly, in many applications it may be possible to use the “body
index” segmentation made available by the Kinect SDK. This coarse
segmentation assigns each pixel of the depth map to one of up to six
people or the background, and could be used as a mask or given
some hysteresis at the level of the user.

An interesting question is whether it is possible for one mobile
device user to “spoof” another mobile device user by mimicking
their motion simultaneously. While our first experiment suggests
that it is very difficult to do, in theory it is possible. In such cases it
should be possible to at least detect that two devices appear to match
the same image motion, or themselves, and block further action.
Another approach is to use CrossMotion’s results to bootstrap
further vision-based analysis to achieve a two-factor authorization.
For example, device or user identity and location within the image
could seed a targeted face recognition process.

Finally, we note that the CrossMotion fusion described in this paper
assumes that the device motion and corresponding image motion
consists only of translation, and not rotation. Consider, for example,
spinning the mobile device in place. In this case CrossMotion may
not find the device, since the device accelerometers will give very
low values, while there may be extensive motion observed about the
device. In practice this rarely is an issue, as the rotation of the device
and user is often accompanied by significant translation. We
envision extending the model to more completely model device
motion by including angular velocity as reported by device gyros
and observed by rotation in the optical flow field about the device.
Including angular velocity may improve the precision and
robustness of the matching process.

Figure 4. Image of 5, ,,, for phone located in (a) shirt pocket and
(b) pants pocket. Darker pixels indicate better match.

6. APPLICATIONS

Because it makes few assumptions about the appearance of the
mobile device or the user carrying it, CrossMotion can be used in a
wide variety of application settings.

Robust indoor person tracking is useful in providing location-based
services to individuals. Way-finding and delivering targeted
advertising are two often-cited example applications. CrossMotion
can be used in many indoor person tracking applications where a



computer vision-based approach would be acceptable, and where
users are likely carrying a mobile device such as a smartphone or
tablet. Computer vision-based approaches to person tracking are
attractive because they can yield fine-grained position information
but they typically either rely on visible markers (as in [16]) or
complex models of the user’s appearance. Other approaches require
the user to carry new devices and therefore are unlikely to be
adopted outside of critical applications. As an example way-finding
application, consider providing directions to a visitor as they
approach key hallway intersections, or when they leave an elevator.
A CrossMotion-equipped depth camera could be installed at these
locations to direct the visitor.

CrossMotion’s ability to track and identify users by way of their
mobile device makes it particularly appropriate for various device
association problems. For example, a connection between a mobile
device user and a wall display could be automatically established as
the user approaches the display. Knowing the precise position with
respect to the display can be used in number of ways. For example,
when there are multiple simultaneous users, the wall display can
render each user’s own set of virtual objects nearby. Users can
“flick” objects from their device onto the display. Fine-grained
person tracking and device association can also be used to detect
when users bring their devices near to each other, which can used
for a variety of applications [6].

CrossMotion may be useful in various settings where it is valuable
to track objects of interest as they move about the environment,
particularly when it is undesirable to attach visual markers to those
objects. For example, young children wearing small wrist worn
sensor packages could be tracked in school [4], a child’s stuffed
animal could be tracked throughout the house, while real animals
could be tracked to study their patterns of movement. The Xbox
One Skype app performs an automatic digital pan and zoom to
capture the active participants in the room, based on simple image
motion processing techniques. CrossMotion might be used to limit
this selection to particular users. Similarly, given a future long-range
depth camera, a calibrated pan/tilt/zoom camera might follow a
particular soccer player on the field.

7. CONCLUSION

We introduce CrossMotion, a cross-modal sensor fusion technique
to detect and track mobile devices and the people carrying them.
Because it matches inertial device motion with motion observed in
video, it makes very few assumptions about the appearance of either
the device or the user. This paper details a real time implementation
of the technique based on estimating image acceleration from
optical flow. Our initial experiments with the technique demonstrate
its ability to find the user reliably (99% of the time). In many cases
it can find the device itself even when it is not in direct view of the
camera. While there are a number of considerations in applying the
technique, we believe it is a unique and potentially useful option in
many ubiquitous computing scenarios.

8. REFERENCES

[1] Brox, T., Bruhn, A., Papenberg, N., and Weikert, J. High
accuracy optical flow estimation based on a theory for warping.
In Proc. 8" European Conference on Computer Vision, vol. 4.
2004. 25-36.

223

[2] Hinckley, K., Ramos, G., Guimbretiere, F., Baudisch, P., and
Smith, M. Synchronous gestures for multiple persons and
computers. In Proc. UIST 2003. 149-158.

Holmquist, L.E., Mattern, F., Schiele, B., Alahuhta, P., Beigl,

M., and Gellersen, H. Smart-Its friends: A technique for users

to easily establish connections between smart artefacts. In

Proc. Ubicomp 2001. 116-122.

Kawai, J., Shintani, K., Haga, H., and Kaneda, S. Identification

and positioning based on motion sensors and a video camera.

In Proc. 4" IASTED Int. Conf. on Web-Based Education, 2005.

Maki, Y., Kagami, S., and Hashimoto, K. Accelerometer

detection in camera view based on feature point tracking. In

Proc. [EEE/SICE Int’l Symp. On System Integration. 2010.

448-453.

Marquardt, N., Hinckley, K., and Greenberg, S. Cross-device

interaction via micro-mobility and F-formations. In Proc. UIST

2012. 13-22.

Mayrhofer, R., and Gellersen, H. Shake well before use:

intuitive and secure pairing of mobile devices. IEEE

Transactions on Mobile Computing, 8(6). 2009. 792-806.

Olwal, A., and Wilson, A.D. SurfaceFusion: Unobtrusive

tracking of everyday objects in tangible interfaces. In Proc.

Graphics Interface 2008. 235-242.

Plotz, T., Chen, C., Hammerla, N. Y., and Abowd, G.A.

Automatic synchronization of wearable sensors and video-

cameras for ground truth annotation- a practical approach. In

Proc. 16" Int. Symp. on Wearable Computers, 2012.

[10] Rekimoto, J., Ayatsuka, Y., and Kohno, M. SyncTap: An
interaction technique for mobile networking. In Proc. Mobile
CHI 2003. 104-115.

[11] Rofouei, M., Wilson, A.D., and Brush, A.J. Your phone or
mine?: Fusing body, touch, and device sensing for multi-user
device-display interaction. In Proc. ACM SIGCHI. 2012. 1915-
1918.

[12] Schmidt, D., Chehimi, F., Rukzio, E., and Gellersen, H.
PhoneTouch: A technique for direct phone interaction on
surfaces. In Proc. UIST 2010. 13-16.

[13] Shigeta, O., Kagami, S., and Hashimoto, K. Identifying a
moving object with an accelerometer in a camera view. In
Proc. Int. Conf. Intelligent Robots and Systems, 2008.

[14] Stein, S., and McKenna, S.J. Accelerometer localization in the
view of a stationary camera. In Proc. Ninth Conference on
Computer and Robot Vision, 2012. 109-116.

[15] Teixeira, T., Jung, D., and Savvides, A. Tasking networked
CCTV cameras and mobile phones to identify and localize
multiple people. In Proc. Ubicomp, 2010. 213-222.

[16] Want, R., Hopper, A., Falcgo, V., and Gibbons, J. The active
badge system. ACM Transactions on Information Systems,
10(1), 1992. 91-102.

[17] Welch, G., and Bishop, G. An introduction to the Kalman
filter. Technical Report TR 95-041. University of North
Carolina at Chapel Hill Dept. of Computer Science. 1995.

[18] Wilson, A.D., and Sarin, R. BlueTable: connecting wireless
mobile devices on interactive surfaces using vision-based
handshaking. In Proc. Graphics Interface 2007. 119-1.

[19] Wolfe, J.M. Guided search 2.0: a revised model of visual
search. Psychonomic Bulletin & Review 1, 2 (1994), 202-238.





