
 

Ripples: Utilizing
Improve User Interaction with Touch Displays

Daniel Wigdor
1
, Sarah Williams

2
, Michael Cronin

Microsoft Surface

{ dwigdor | sarahwil | micron |

Figure 1. In Ripples each contact with the displ
the Ripples system. Right: tethers indicate the fingers have slipped off the item because it reached maximum size.

ABSTRACT 

We present Ripples, a system which enables 

around each contact point on a touch display

these visualizations, provides feedback to the user 

successes and errors of their touch interactions. Our vis

alization system is engineered to be overlaid on top of e

isting applications without requiring the applications to be 

modified in any way, and functions independently of the 

application’s responses to user input. Ripples 

fundamental problem of ambiguity of feedback 

action results in an unexpected behaviour. 

can be caused by a wide variety of sources. We des

ambiguity problem, and identify those sources. We then 

define a set of visual states and transitions needed to r

solve this ambiguity, of use to anyone designing touch a

plications or systems. We then present the Ripples impl

mentation of visualizations for those states, and the results 

of a user study demonstrating user preference for the sy

tem, and demonstrating its utility in reducing errors.

Author Keywords 

Touch, multi-touch, fat fingers, precision input, tabletop.

ACM Classification Keywords 

H5.2f. Graphical User Interfaces  

 

 

In preparation for ACM UIST 

  

Ripples: Utilizing Per-Contact Visualizations
Improve User Interaction with Touch Displays

, Michael Cronin
2
, Robert Levy

1
, Katie White

2
, Maxim Mazeev

Microsoft Surface
1
 | Microsoft Corp.

2
 | Microsoft Research

3
 

One Microsoft Way 

Redmond, WA, 98052 

dwigdor | sarahwil | micron | rlevy | katwhite |  maximm | benko } @microsoft.com

 

. In Ripples each contact with the display is given a response and persistent visualization.
the Ripples system. Right: tethers indicate the fingers have slipped off the item because it reached maximum size.

enables visualizations 

around each contact point on a touch display and, through 

provides feedback to the user about 

successes and errors of their touch interactions. Our visu-

alization system is engineered to be overlaid on top of ex-

s without requiring the applications to be 

and functions independently of the 

user input. Ripples reduces the 

fundamental problem of ambiguity of feedback when an 

 This ambiguity 

a wide variety of sources. We describe the 

ambiguity problem, and identify those sources. We then 

define a set of visual states and transitions needed to re-

solve this ambiguity, of use to anyone designing touch ap-

plications or systems. We then present the Ripples imple-

zations for those states, and the results 

of a user study demonstrating user preference for the sys-

tem, and demonstrating its utility in reducing errors. 

touch, fat fingers, precision input, tabletop. 

INTRODUCTION 

In recent years, direct-touch displays have become 

of research and commercial activity. 

research has been dedicated to solving inherent limitations 

with touch technologies, such as 

clusion, generally known as the fat finger problem

6, 15, 23, 24, 25]). Equally important

dressed, is the problem of feedback ambiguity

is caused by the elimination of both the telepointer and the 

physical feedback provided by the mouse device itself.

In our own observations of users interacting with

vices, we have found that this manifests itself in a lack of 

confidence that any given input is being accurately received 

by the application, caused by a general inability to properly 

attribute unexpected results to their actual causes. We have 

observed that this can result in a reduction in confidence in 

the device, as well as an increase in user frustration and co

fusion across the entirety of the experience.

bated in multi-user systems, in which

users add variability to system response.

In this paper, we describe Ripples, 

framework (Figure 1), and its ability to improve 

touch interaction. First, we provide a det

the feedback ambiguity problem, which

tion for our work. Then we review related work and d

scribe the design of our system, including interaction d

sign, as well as the equally important visual and system 

considerations. Next, we report results from a user study 

which demonstrates the utility of contact visualization in 

reducing errors in making selections, as well users’ prefe

ence for the system. Finally, we make a series of design 

recommendations for those looking to i

contact visualization system. 

 

izations to  
Improve User Interaction with Touch Displays 

Maxim Mazeev
1
, Hrvoje Benko

3
 

} @microsoft.com 

  

. Left: photograph of  
the Ripples system. Right: tethers indicate the fingers have slipped off the item because it reached maximum size. 

touch displays have become a focus 

of research and commercial activity. A large amount of 

research has been dedicated to solving inherent limitations 

 precision and finger oc-

fat finger problem (e.g: [3, 

Equally important, but largely unad-

feedback ambiguity. This problem 

both the telepointer and the 

physical feedback provided by the mouse device itself. 

ions of users interacting with touch de-

, we have found that this manifests itself in a lack of 

confidence that any given input is being accurately received 

general inability to properly 

results to their actual causes. We have 

a reduction in confidence in 

the device, as well as an increase in user frustration and con-

fusion across the entirety of the experience. This is exacer-

which the actions of other 

variability to system response. 

 our contact visualization 

and its ability to improve direct-

touch interaction. First, we provide a detailed analysis of 

which is the core motiva-

tion for our work. Then we review related work and de-

scribe the design of our system, including interaction de-

sign, as well as the equally important visual and system 

Next, we report results from a user study 

which demonstrates the utility of contact visualization in 

reducing errors in making selections, as well users’ prefer-

ence for the system. Finally, we make a series of design 

recommendations for those looking to implement their own 



 

    

TOUCH FEEDBACK AMBIGUITY PROBLEM 

When interacting with a touch system, there are a number 

of situations where the user’s input will result in an unex-

pected behaviour. The user might place two fingers onto an 

object anticipating a particular response, and another is 

presented, or no response at all. Did the hardware fail to 

detect the touch? Did their fingers miss the target? Is the 

multi-finger response not what they believed it to be? Was 

there a simultaneous accidental activation elsewhere on the 

device that changed the state of the object? Is the object not 

enabled for touch interaction? 

How the application reacts to the user’s input determines 

how well the user will be equipped to understand the rea-

sons for the unexpected behaviour. However, most applica-

tions do not provide an explicit feedback mechanism that 

can help users to understand why their action was not suc-

cessful, and the application feedback is usually constrained 

to responses designed to signal the execution of successful 

actions only. The result is applications which respond to 

touch input, but do not provide information about the causes 

of those responses. We refer to this as touch feedback ambi-

guity problem, where, in the case of confusing or unsuccess-

ful actions, the user is usually left to deduce the cause of 

error from very little or no application feedback. Previous 

research, as well as our own observations, have found that 

this ambiguity can lead to a disconnection from the system, 

and frustration, or a loss of sense of control [17,20,28].  

To understand this problem, consider the difference be-

tween actuation of an on-screen object with a mouse or a 

touch screen: with the mouse, the user moves the pointer 

over an object and clicks the button, and with the touch 

screen, the user taps directly on the object on the screen. 

Now, consider what happens when the system does not 

react in an expected manner.  

The user is left to interpret this response using the feedback 

which has been made available by the system. In the case 

of a mouse input, feedback provided by the operating sys-

tem helps the user to quickly isolate the cause. Visual 

movement of the mouse reassures the user that the system 

is still working, the physical activation of the mouse button 

affirms that the input was delivered, and the position of the 

mouse pointer makes it apparent where the input was deliv-

ered. In touch-based systems, this is typically not the case 

[19, 22], and so it is left to the application to provide feed-

back for all of these potential causes. Table 1 describes 

various possible causes of unexpected behavior, as well as 

the source and type of feedback available to dispel that 

cause in each of a mouse and direct-touch system.  

It is possible for application designers to provide visual 

feedback distinguishing these sources of error. However, 

this makes it more difficult to produce touch-based applica-

tions than mouse-based ones, which do not require this 

feedback mechanism. Further, relying on individual appli-

cations to provide feedback decreases the likelihood of 

consistency across applications. 

Table 1. Causes of an unexpected behaviour to in-
put in a mouse-based system and the feedback 
given by the hardware or OS in typical mouse and 
touch systems to each, or left to applications (app). 

Cause of Unex-
pected Behaviour 

Feedback Refuting Cause 

Mouse Touch 

System is non-responsive 
OS: Pointer  
movement 

(app) 

Hardware failed  
to detect input 

HW: Activation  
of button 

(app) 

Input delivered to  
wrong location 

OS: Visible 
pointer 

(app) 

Input does not map to 
expected function 

(app) (app) 

Sources of Error 

Before discussing how the Ripples framework addresses 

the feedback ambiguity problem, it is important to discuss 

the sources of error that typically cause the unexpected 

behaviours in touch-based systems: it is these events which 

we aim to communicate to the user, resolving ambiguity. 

Activation Event 

When interacting with a WIMP system, users feel a physi-

cal ‘click’ when they depress the mouse button. When 

working with a touch screen, users feel the moment of con-

tact with the display. However, depending on the particular 

hardware, the moment of activation can vary: with some 

vision-based systems, for example, activation occurs before 

the finger reaches the display, which might result in a dif-

ferent initial position of the touch contact than where the 

user thinks the contact occurred. With some resistive tech-

nologies, a degree of pressure is required for activation 

[15]. There is no consistent physical sensation connected 

with this transition. A correct feedback should indicate the 

activation moment, and help the user to be accurate in their 

touches. 

Fat Fingers 

There are two elements of the fat finger problem: occlusion 

of the screen by the finger, and the reduction of the contact 

area to a single point can cause users to ‘miss’ targets they 

are physically touching [25]. When the fat finger problem 

causes a missed target, the correct feedback must distin-

guish that this failure was due to a miss and, ideally, dem-

onstrate how to avoid missing in the future.  

Selection 

In systems where land-on selection [15] is employed, visu-

alizing whether a user has successfully touched an on-

screen target is essential. This is related to, but distinct 

from, the fat finger problem.   

Non-Responsive Content 

Invariably, applications will include elements which are not 

intended to respond to touch: deactivated controls, back-

ground images, etc. Although visual cues should afford 

inactivation to the user, this state nonetheless adds another 

source of error in which the user will receive no reaction, 

requiring correct feedback.  



 

    

Accidental Activation 

As Ryall et al. point out, with a multi-touch system, “every 

touch counts”. Especially with horizontal touch systems, 

accidental activations are common [17]. When this occurs, 

users are able to observe only the consequence to the appli-

cation. As they also point out, some accidental inputs are 

not noticed by the user, and so sudden changes in the state 

of the system cannot be properly linked to their cause. A 

meaningful feedback would make the causes of accidental 

activations clear to the user. 

Multiple Capture States 

In a WIMP system, UI controls have two capture states: 

captured (typically entered when the mouse is clicked on a 

control), and uncaptured. When working with controls on a 

multi-touch system, more than one contact can capture con-

trols simultaneously. For example, selecting the thumb of a 

slider with two fingers can mean that it will not track di-

rectly under a single finger when moved. 

When too many contacts have captured a control, its behav-

iour can be well defined, but inconsistent with the direct-

touch paradigm, leading to confusion. We term this state 

over-captured. To help the user understand over-capture, 

the contact visualization system must include a visual dis-

tinction between not only uncaptured and captured con-

tacts, but over-captured ones as well. 

Physical Manipulation Constraints 

The direct-touch paradigm is also broken when movement 

constraints are reached. This can occur, for example, when 

attempting to move an object past the bounds of its con-

tainer, or to resize an object past its size limit. 

Interaction at a Distance 

Use of controls can extend beyond the bounds of those con-

trols. For example, in a traditional GUI, the scrollbar can be 

captured by selecting it with the mouse. At that point, verti-

cal movements of the mouse are applied to the position of 

the thumb, and horizontal movements are ignored. The 

result is that the mouse pointer can be moved away from 

the slider while still controlling it. This is equally necessary 

in a touch system, but mapping fingers to their controls is a 

potential source of confusion with multiple touch-points, 

controls, and users all interacting simultaneously. 

Stolen Capture  

In a traditional GUI, controls are captured by selecting 

them with the mouse pointer. In a multi-touch system, mul-

tiple fingers may attempt to capture a control simultane-

ously. How to deal with multiple, possibly contradictory 

touches to the same control is an issue decide by frame-

work designers. In the DiamondSpin SDK, ‘click’ events 

are generated every time a user taps a button, even if an-

other finger is ‘holding it down’ [19]. In the Microsoft Sur-

face SDK, ‘tap’ events (equivalent to ‘click’) are generated 

for buttons only when the last captured contact is lifted 

from the control. While both approaches have merit, a con-

sequence of the latter is that buttons can be ‘held down’ by 

a user. When twinned with the issue of interaction at a 

distance, it is possible that a button can be ‘held down’ by a 

contact not actually touching that button. When a subse-

quent ‘tap’ fails, the source of failure should be visualized. 

Tabletop Debris 

Users of tabletop systems have been observed to place ob-

jects on the surface of the screen [26]. The table used in 

that study did not sense the presence of objects on its sur-

face [5]. This is not true, however, of all sensing technolo-

gies used in multi-touch systems. The result can be unex-

pected behaviour when the system responds to these unin-

tended inputs. In our own internal observations of users, we 

found that this was particularly problematic when an object 

would act as an additional contact for an object being ma-

nipulated by the user.  

When scrolling a list, for example, the Microsoft Surface 

SDK uses the average distance traveled of all contacts on 

the list to compute its movement. Because it is interpreted 

as a stationary contact, a beverage placed on the surface of 

the table, as in [26], has the effect of halving the speed of 

scrolling of a list. A visualization framework should visual-

ize both that debris on the table is being interpreted as an 

input, as well as when stationary contacts are placing addi-

tional constraints on movement. 

A Need for a Framework 

Currently there is no generalized visual language for con-

veying these various error conditions to the user. It is left to 

the application designer to reflect the state of the contact in 

some visual property of the application. Even worse, there 

has been no description of a set of visual states and transi-

tions which, when taken together, address each of these 

conditions. There are two possible outcomes: either the 

application fails to provide a visualization, or each applica-

tion provides its own, independent (and therefore inconsis-

tent) visualization. In either case, the result is that, when 

system responses do not map to users’ expectations, the 

ambiguity of this feedback makes it impossible to decipher 

the causes of unexpected behaviour. Further, the burden on 

designers of applications for direct and multi-touch systems 

is much greater than for mouse systems, making it difficult 

to transition from the mouse to the touch world. 

Per-contact visuals were selected over other techniques in 

an attempt to minimize visual overhead: ensuring consis-

tent, unambiguous feedback was available, but not over-

whelming. Of course, it would be possible for a designer to 

fully instrument an application so that every element con-

veys an individual response that is appropriate to the par-

ticular element, rather than having a generalized visualiza-

tion tool. Were they to do this, a requisite first step would 

be to identify those states and transitions requiring visuali-

zation, ensuring that all sources of unexpected behaviour 

are identifiable by the user. The contribution of our work, 

therefore, is threefold. First, we describe the need for this 

feedback, and describe the various error conditions requir-

ing disambiguation. Second, we describe a spanning set of 

states and transitions which, if uniquely visualized, results 

in a touch system free of ambiguity. Finally, we provide a 

set of application independent, user-tested, and iteratively 

designed visualizations which illustrate those states and 

transitions. These designs are ready to be taken-up by sys-

tem designers, in order to ease the development of effective 

direct and multi-touch applications. 



 

    

RELATED WORK 

There are several areas of research which are highly rele-

vant, and we will discuss each in turn. 

Several multi-touch displays have been described in the 

literature. TouchLight used two cameras located behind a 

display to detect the position of users’ hands [27], and dis-

played the raw video image as feedback. This is similar in 

concept to the Holowall [13].  Other technologies include 

Frustrated Total Internal Reflection [9], capacitance [16, 5], 

bezel cameras (Smart Board, smarttech.com), and rear-

vision (Microsoft Surface - microsoft.com/surface). There 

are also mobile devices which have enabled direct touch 

input with a finger or stylus. Early examples of such de-

vices include the Apple Newton and the PARC TAB [18], 

each of which was designed for input with a stylus, treated 

in a direct-touch manner. Apple’s iPhone supports two-

point, direct touch input (apple.com/iphone/). It is our in-

tention that our contact visualization system will be of 

benefit to direct-touch systems of all kinds: single or multi-

touch, single or multi-user, small or large display, and util-

izing any input technology. Each of these devices is simi-

larly afflicted by feedback ambiguity.  

Several researchers have attempted to overcome these 

problems, though each has had limitations [1, 3, 6, 8, 15, 

23, 24, 25]. One possible solution to the problem of impre-

cision is to move the input surface to the back of the de-

vice, such as BehindTouch [11], HybridTouch [21], Under 

the Table [24], and LucidTouch [25]. Only the LucidTouch 

provides a solution to the problem of enabling precise land-

on selection [15], via ‘fingertip cursors’. This comes at the 

expense of requiring input to the back of the device. Such a 

solution is not practical in all multi-touch form factors. 

Ultimately, the goal of the our visualization system is to 

increase user confidence in touch-screens by eliminating 

error ambiguity, reducing errors when touching small tar-

gets, and by providing an information channel to convey 

state information about each contacts. There have been 

other design and research efforts intended to address each 

of these. Hancock et al. investigated the use of auditory 

feedback, but point out its limitations in a multi-user sys-

tem; these problems would no-doubt be amplified in a 

multi-touch system [10]. Other researchers have demon-

strated the use of haptic feedback in touch displays, though 

their methods preclude scaling to multi-touch [14]. Finally, 

perhaps the most highly related work is in legacy touch-

screen systems. In many such systems, the touch screen is 

used as a controller for a mouse pointer. The consequence 

is that, for every touch, the pointer moves to the point of 

contact. Although similar in concept, the size of the pointer 

is usually such that it cannot be seen until after the user has 

lifted her finger. As such, it cannot convey the full breadth 

of information included in our contact visualization system. 

Also related are any touch applications which include a 

visual response to every touch, including those that are 

unsuccessful. Such systems, however, may fail to fully 

visualize all of the touch states and transitions between 

those states which we have identified and designed for.  

DESIGN 

We designed Ripples, a contact visualization system, to pro-

vide a feedback information channel to users, helping them 

to be more accurate and efficient in their interactions with 

the system. Ripples consists of a set of 6 visualizations span-

ning 14 states and transitions that place the information be-

neath and around users’ fingertips. The design of effective 

contact visualizations is critical as these are intended to be 

constantly present, sitting atop all applications. In designing 

contact visualizations, we faced several design challenges: 

1. Visualize action sources, alleviate feedback ambiguity 

2. Provide clear visual encodings of multiple parameters 

3. Maintain visual integrity of underlying applications 

4. Build a framework requiring little work from applica-

tion developers to leverage 

Balancing these requirements required careful blending and 

balancing of interaction, visual, and system design. 

Early Consideration: Raw Sensor Output 

An early design consideration was to show the raw sensor 

output. Since our work is based on Microsoft Surface, this 

is an amalgamated image of the infrared light reflected off 

of the hands, similar to TouchLight and Holowall [13, 27]. 

Our preliminary design displayed a number of previous 

input frames on the screen, so that, when moving, the out-

put would not be occluded (Figure 2). This design was ul-

timately rejected for two reasons. First, the solution would 

have been particular to vision-based systems. Second, raw 

sensor data did not provide sufficient information to over-

come all elements of feedback ambiguity. 

System Lag 

Because of the necessity of processing of sensor input, all 

interactive systems suffer somewhat from the problem of 

lag: a requisite hysteresis between the physical input and 

the visual output in response. This is especially apparent 

with direct-touch systems, when dragged content will trail 

behind the finger. What we found in evaluating our early 

designs of contact visualizations was that lag was espe-

cially noticeable, and that it reduced users’ perception of 

responsiveness of the system as a whole. Any implementa-

tion of a contact-visualization system must address this 

problem, in addition to that of feedback ambiguity. 

 

Figure 2. An early attempt to visualize input by dis-
playing raw sensor data. This approach does not 
generalize across device types. 



 

    

Visual States and Transitions 

Ripples’ states and transitions of can be divided into two 

categories: those that apply to any direct-touch system, and 

those which apply primarily to multi-touch. 

Basic Contact Visualization States 

Basic states provide helpful feedback for any touch-system, 

and address many of the problems described previously. 

We determined a need for visualization of several states, 

and of the transitions between those states. The aim was to 

establish a minimum spanning set, providing visualizations 

only where needed to combat specific problems (Figure 3).  

 

Figure 3.  Ripples states & transitions. 0: not yet 
touching 1: stationary contact 2: moving contact. 

State 0 cannot be visualized in most systems, as it precedes 

detection. The visualizations of transition A and state 1 

address the problem of clearly indicating the activation 

event. They also help to note accidental activations, as un-

intended contacts receive an individual response, allowing 

the user to correct their posture. To help the user to differ-

entiate between fat fingers and non-responsive content, and 

to visualize selection, the visual provided for transition A 

differentiates between contacts which have successfully 

captured an object, and those which have not (Figure 4). 

To address fat fingers, we also included an animation for 

transition D (Figure 5). This animation emphasizes the hit-

testing point, similar to [15,23,25]. Unlike this past re-

search, the point is not offset from the contact, maintaining 

direct-touch. To overcome occlusion, transition D employs 

hysteresis, so that it will continue to be visible for a mo-

ment after the user lifts their finger. Further, as the contact 

visualization disappears, it contracts to the hit-test point, so 

that this point is the last thing seen by the user (Figure 5). 

Unlike previous work, the goal is not to assist the user in 

making the current selection, but rather to improve accuracy 

over time by helping them to learn the point/finger mapping. 

 
Figure 4. Left: 1 of 2 animations is shown for transition 
A. If an object is captured, a circle shrinks around the 
contact. If not, it ‘splashes’ outward. Right: State 1 is 
identical for both captured & uncaptured.  

 

 

Figure 5. Transition D (see Figure 3): when contact is 
lifted, the visualization shrinks to the hit testing point. 

 

Figure 6. state 2 is shown as a trail, which reduces 
the perception of lag. 1: contact is static (state 1), 2: 
begins to move (transition B), 3: moving (state 2). 

The addition of State 2 was made to allow us to address the 

issue of lag. In our visual rendering, the contact is seen to 

transition to a trail shown behind the finger, making lag 

appear to be a design element. State 2 and transitions B and 

C are shown in Figure 6. 

Multi-Touch and Advanced Contact Visualization States 

In addition to the basic contact visualization, additional 

states were added to address issues which arise primarily 

with multi-touch systems. These issues are multiple capture 

states, physical manipulation constraints, interaction at a 

distance, and stolen capture. 

In examining these problems, we found that all could be 

addressed by adding just two states and their associated 

transitions. These are shown in Figure 7. 

 

Figure 7. Additional Ripples states & transitions for 
multi-touch. 1: (see Figure 3). 3: object is over-
captured. 4: contact operating beyond constraints.  

State 3 is described earlier as over-captured: when the 

number of contacts captured to a control exceeds the avail-

able degrees of freedom of that control, necessitating 

breaking the direct-touch input paradigm. For example, if 

two fingers have captured the thumb of a slider, or if three 

have captured an object enabled for two-finger ro-

tate/translate/scale. As in the basic contact visualizations, 

this difference is conveyed through the transitions. Transi-

tions F receives the same visual treatment as transition A 

for an uncaptured contact, and transition G the same as a 

captured contact. To differentiate these, however, transi-

tions F and G are applied to all contacts captured to a con-

trol, clearly differentiating states 3 and 1. 

  



 

    

 

Figure 8. Ripple tethers indicate that a size con-
straint has been reached on an item being scaled. 

State 4 is a condition under which the user has met a con-

straint on translation, scaling, or rotation of an object. In the 

Microsoft Surface SDK, these contacts remain captured to 

the object even though they are no longer touching it. An 

alternative capture model might cause the contact to lose 

capture of the object once the finger is no longer touching it. 

Whatever model is employed, it is critical that a visual be 

provided to explain why the object is no longer under the 

user’s finger – this addresses the problems of physical ma-

nipulation constraints and the interaction at a distance. To 

visualize these constraints, we employed a visualization 

similar to the trails seen in state 2 (see Figure 6). In state 4, 

the trails become ‘tethered’ to the point at which the con-

straint was reached, illustrating that the contacts are now 

‘slipping’ from their last point of direct-touch (Figure 8).  

A purist’s interpretation of state 4 would yield tethers when 

interacting with the majority of controls, since most map 

multiple degrees of freedom to a single dimension or cannot 

be moved. What we found, however, was that this could 

produce what we termed the Freddy Kruger effect, where 

tethers were appearing regularly all over the display. We 

reduced the frequency of the tethers to the minimal set 

needed to address specific as sources of error (see above). 

The first such situation was the over-constrained scrolling of 

a list. It was determined through iterative design that, in most 

cases, the reaction of the list itself matched user intent, and 

thus did not require visualization of constraints. The remain-

ing case involves tabletop debris, which can cause slower 

than expected scrolling of a list. In this situation, determined 

by the presence of a stationary contact, tethers are rendered 

to demonstrate that the list is scrolling slowly because of that 

contact (Figure 9). 

 

Figure 9. Tethers indicate that slow scrolling of the 
list is due to the presence of the stationary contact. 

 

Figure 10. Left: contact controlling the slider is visu-
ally tethered to it at all times. Right: for stationary 
controls, such as buttons, the tether is shown only 
when another contact attempts to actuate the control. 

The final state 4 visualization visually tethers contacts 

which have slid off of, but are still captured to, controls. 

Again, to reduce unnecessary visuals, we split these into 

two classes: for controls which can be manipulated from a 

distance, the visualization is shown from the moment the 

contact slides off the control. For stationary controls, the 

tether is shown only when another contact attempts to actu-

ate the control, addressing stolen capture (Figure 10). 

System Design 

Key to Ripples’ success as a cross-application standardized 

visualization is its integration into a platform. Those seek-

ing to implement Ripples for their platforms can do so as a 

system-level framework which renders the visuals above all 

applications running on the system.  Extensions for various 

UI toolkits can then be created which pass contextual infor-

mation to the rendering layer.  The contextual information 

includes which contacts are captured, whether and to where 

tether lines should be rendered for each captured contact, and 

which colours should be used to provide the optimal appear-

ance over the application.  Once a UI toolkit has integrated 

with the Ripples rendering framework, applications using 

this toolkit automatically get the benefits of Ripples without 

any burden on application authors.  

Designers of platforms who wish to support application de-

velopment without a UI toolkit can provide API’s to allow 

application developers to request the rendering of Ripples 

above their application in real time. 

We recommend that such a framework include mechanisms 

to allow modification of Ripples, an extensibility mecha-

nism. This allows UI control developers and application 

designers to fine-tune parts of the visualization provided for 

contacts captured to their controls and applications. Our 

system is implemented for modification on a per-control 

and container basis, similar to pointer customization for 

mice in most software development kits. Our goal was to 

make it easy to modify the visual appearance without 

changing the underlying behaviour. An application can 

choose to disable visuals entirely, to maintain the functional-

ity but replace the visualization, to select different colours to 

better match their application, or leave Ripples unmodified.  

 



 

    

STUDY: ACCURACY & PERCEIVED RESPONSIVENESS 

Having defined the various states and transitions requiring 

visualization, and having designed visualizations for those 

states, we set out to test the efficacy of Ripples in aiding 

the user to interact with a touch display. 

We wished to examine two issues with respect to Ripples. 

First, we  wished to test our belief that this feedback would 

reduce errors when interacting with touch screens. Second, 

we wished to assess user preference for the presence or 

absence of the Ripples as an application-independent visu-

alization, and to collect feedback in order to refine them. 

Goals and Hypotheses 

Part 1: User Preference 

Participants were asked to state a preference for Ripples to 

be enabled or disabled, following a session in which they 

interacted with two Microsoft Surface applications under 

both conditions. We wished to ascertain user preference, as 

well as determine the reason for their preference. We hy-

pothesized that the majority of participants would state a 

preference for Ripples. We further hypothesized that the 

majority of participants would react well to the presence of 

feedback, and that most negative reaction would be to the 

particular visualization of the contact states implemented. 

Part 2: Selection Accuracy 

Given the targeting help provided by Ripples (Figure 5), we 

hypothesized that errors would be reduced with Ripples, 

and that this effect would be inversely proportional to the 

size of the target being selected. 

Participants 

Fourteen paid participants (7 male and 7 female) between 

the ages of 30 and 62 were recruited from the local com-

munity. 13 were right handed, and 1 was left-handed. Edu-

cation levels varied from some undergraduate to post-

graduate degrees. None had used a multi-touch tabletop 

before, and none had experience with touch devices (ex-

cluding automated tellers and self-checkouts). Problems 

with the apparatus prevented us from analyzing one partici-

pant’s results, and so it has been excluded. 

Apparatus 

Two versions of the test suite were loaded onto two differ-

ent Microsoft Surface units: one version with Ripples en-

abled, the other with it disabled. Testing was done to ensure 

that calibration differences would not impact our results.  

The device is equipped with a display running at a resolu-

tion of 1024x768 (62x46.5cm). The apparatus included 

three software packages. The first two were the Photos and 

Music applications from within the Microsoft Surface Ap-

plication Suite. The Photos application allows users to view 

and manipulate digital photographs. The Music application 

allows users to view, manipulate, and listen to digital music 

and music albums. The third application was a test of selec-

tion accuracy, an implementation of the test described in 

ISO standard 9241-9 [12]. 

The software ran entirely on the Microsoft Surface unit, 

with statistics recorded for later analysis. Participant ratings 

and comments were elicited through questioning and re-

corded by the lab technician. 

Task and Procedure 

The experiment was completed in two parts. Participants 

first completed various simple tasks within the applica-

tions. They would then switch to the other table, and com-

plete the same tasks a second time (order was randomly 

assigned between participants). Next, they were asked to 

assess any differences between the two tables. Qualitative 

comments were gathered on the users’ opinion of Ripples 

with respect to interaction with the applications. In the sec-

ond part of the experiment, each participant completed the 

selection accuracy measure to assess accuracy. Again, table 

order was randomly assigned between participants. 

Preference data was intentionally collected before conduct-

ing the accuracy tests, to ensure that the responses would 

not be coloured by that portion of the experiment. 

Part 1: Preference 

Participants were shown each of the Photos and Music ap-

plications from the Microsoft Surface application suite. 

Each participant interacted with the application for five 

minutes. During this time, they were prompted to perform 

several interactions that would elicit the various Ripples 

visuals (Ripples case) or demonstrate the situations where 

they would disambiguate errors (no-Ripples case). This was 

then repeated with the other Microsoft Surface unit. Par-

ticipants were then asked which tabletop they preferred and 

why. Qualitative comments were collected regarding user 

sentiments towards the visual responses. 

Part 2: Selection Accuracy 

Participants were shown a selection task application that 

displays a circular arrangement of 16 equally–spaced, 

equally-sized, white-coloured targets aligned to the hori-

zontal and vertical centre of the background. The diameter 

of the arrangement determines the movement amplitude 

(A) for each trial.  This was fixed at 512 pixels (measured 

from centre of one circle to the centre of an opposing cir-

cle), 30.5 cm given the screen resolution of the unit (Figure 

5).  Three different diameters of target circles were used: 

2cm, 2.6cm, and 3.2cm, representing task difficulties of 

4.04, 3.69, and 3.41 bits, respectively. 

 

Figure 11. The experimental display in the selection 
task. Test as described in [12]. 



 

    

 

Figure 12. Participant completing selection task us-
ing the Microsoft Surface table. 

As trials proceed, one circle changes from white to red. The 

participants’ task is to touch the red circle in a clockwise 

pattern. The first circle to turn red is always the one la-

belled C1 in Figure 14, followed by C2, then C3, C4, and so 

forth.  

Trials are defined as a successful activation of a target. If 

the participant does not touch and lift inside the target, the 

trial counts as an error and participant is instructed to con-

tinue to try to touch the circle until that target is success-

fully selected (Figure 12). Each participant completed a 

total of eight blocks on each table. The first set of trials was 

dropped for all participants, as it served as a practice set to 

familiarize the participant with the task. In summary, the 

design was as follows: 

16 selections of a target 

x 3 target sizes 

x 7 blocks 

x 13 participants 

= 4368 total trials 

Results 

Part 1: Preference 

After completing the application usage tasks on both tables, 

participants were asked to describe their experiences and 

differences between the two tables, and to state their pref-

erences for or against Ripples.  

Across all participants, eight (62%) preferred Ripples to be 

enabled, three participants (23%) preferred that it be dis-

abled, and two participants (15%) stated they had no pref-

erence. Two who preferred the absence of Ripples made 

comments to the effect that they felt that the “fingerprints 

were distracting”. One of these participants stated no-

Ripples was preferred because it felt “more like reality”. 

The majority of participants liked the added visual cues 

provided by Ripples and were able to use these cues to their 

benefit when interacting with the applications. The partici-

pants who preferred Ripples made comments such as “I 

know where I am touching technically and I’m reassured”; 

“I can tell where I’m touching … I can see the point of con-

tact [and] know which picture I am touching”; and felt that 

the “sensors caught my actions better”, and “it lets you 

know it was getting the signal”.  

In some cases, participants actually believed that the sens-

ing was enhanced in the table with Ripples enabled, and 

made comments such as “I would prefer… if both tables 

had equal sensitivity”. It was also clear that users appreci-

ated the disambiguation of error cases. Several noted this in 

comments such as “I like to see what is happening, the 

visuals help me figure out what's going on.” 

Part 2: Selection Accuracy 

In the selection task, we measured both the number of er-

rors committed by each participant (errors) and the com-

pletion time for trials without errors (time). 

Overall, participants made significantly fewer errors per 

trial when using Ripples (Ripples: mean = 19.4%, SD = 

17.9%; no-Ripples: mean = 46.9%, SD = 63.8%; t272= -

7.34, p < .001). Condition also had a small but significant 

effect on time (Ripples: 0.799 sec; std dev=0.238, no-

Ripples: mean=0.833 sec; std dev=0.268; t272=2.349 

p=0.020).  

Block had a significant effect on the differences in time 

between conditions. There was no significant differences 

between Ripples and no-Ripples in the 3 blocks of the ex-

periment (no-Ripples: mean=0.838 sec; std dev=0.273; 

Ripples: mean=0.823 sec; std dev=0.218; t116=0.628,  

p=0.531). In the last 3 block of the experiment, a signifi-

cant difference in time was observed (no-Ripples: 

mean=0.832 sec; std dev=0.263; Ripples: mean=0.767 sec; 

std dev=0.247; t116=3.124, p=0.002). This result suggests 

an asymmetric learning effect, with greater performance 

improvements with Ripples than without. 

To assess whether the overall accuracy differences between 

Ripples and no-Ripples varied by size of the object being 

selected, paired t-tests were also conducted by button di-

ameter. It was hypothesized that the differences would be 

greater at the smaller sized buttons, since the smaller size is 

thought to have a higher chance of error. As seen in Table 

2, the effect of Ripples on error rate was significant across 

all target sizes. As hypothesized, this effect was greater for 

smaller targets than for large ones. 

Discussion 

The results of the study reveal several things about the effi-

cacy of the current design of Ripples in achieving our 

goals. There are two general issues examined in this study: 

qualitative feedback / preference, and assistance with accu-

racy of selection. 

Table 2. Error rate and (SD) per trial by target size 
and condition across all 7 blocks.  

 Target Size 

Condition 20mm 26mm 32mm 

Ripples 
32.8%  
(19.6) 

15.7% 
(14.3) 

9.7% 
(9.4) 

No-Ripples 
79.1%  
(79.6) 

40.2% 
(60.0) 

21.6% 
(24.4) 

Significance 
t90 = -5.38,  
p < .001 

t90 = -3.82,  
p < .001 

t90 = -4.82,  
p < .001 



 

    

Preference 

It is not surprising that the majority of users prefer a system 

utilizing Ripples. Interestingly, these results were found 

while interacting with applications which have been spe-

cifically designed for touch input – arguably this effect 

would be even greater for applications not specifically de-

signed for this input mechanism. 

Despite this success, 3 participants specifically stated that 

they would prefer Ripples to be disabled, complaining that 

they were distracting. While the benefit of the system to the 

other users was clear, and was generally preferred, it is also 

clear that there may be a need to enable users to disable the 

system if they so choose.  

Selection Accuracy 

It is clear that Ripples is effective in reducing errors in the 

selection task. This is encouraging: previous more elaborate 

measures at improving accuracy for touch-selections have 

had similar results – but only Ripples does not require any 

rethinking of the direct-touch input paradigm. What is also 

of interest is that Ripples does not actually provide any 

functionality to improve accuracy of touches. Rather, it 

teaches users about the precise location of their hit-testing 

point, after each successful and unsuccessful selection. To 

our knowledge, this is the first demonstration that users can 

learn to be more precise in overcoming the fat-finger prob-

lem – and Ripples is the first technique which has been 

demonstrated to provide the information needed to learn. 

CONCLUSIONS AND FUTURE WORK 

Ripples has proven to be successful in improving user ex-

perience with touch displays. Selections are more accurate, 

and qualitative feedback clearly indicates that they aid with 

interaction with applications. 

We believe our contributions to be fourfold. First, we de-

scribed the various sources of ambiguous system feedback 

in touch systems. Second, we defined a set of visual states 

and transitions which span these sources, and thus describe 

elements necessary to provide ambiguity-free feedback in a 

touch system. Third, we defined a particular set of visuali-

zations for those states and transitions. Last, we presented 

the results of a controlled experiment which demonstrated 

that providing visualizations is helpful to interaction for 

both preference and accuracy, and which provided feed-

back about the particular visualizations we implemented. 

In future, we intend to continue to refine the visual design 

of Ripples, and to investigate the details of its use with non 

vision-based hardware. While Ripples was designed to be 

agnostic to the sensing technology, particularities of sen-

sors may lead to the need to refine the system. Also clear is 

the need to refine and extend Ripples for systems which are 

capable of detecting not just fingertips, but also the shape 

of input, such as full hands or other postures and gestures.  

Also worth examining is how the visual design of Ripples 

affected user preference results shown in the study, and 

how different designs might meet the needs with less of an 

effect on preference. 

DESIGN RECOMMENDATIONS 

Three sets of design recommendations can be gleaned from 

this work. The first is for system designers: the states and 

transitions we have identified all require visualization in 

order to address the litany of problems affecting user confi-

dence in their inputs to touch and multi-touch systems. In 

some cases, these visualizations can be reused in order to 

reduce visual overhead. Because of this reuse, we reintro-

duce moments of ambiguity which we found to be minimal. 

Also, it should also be noted that the capture models may 

vary in other toolkits, requiring a different set of visuals.  

The second set of recommendations is for application de-

signers. A contribution of this work is that the Ripples sys-

tem is application independent, and is intended to be ge-

neric and equally well suited for use in any platform. As 

one of our study participants noted, however, not providing 

visualizations atop applications can be seen as “more like 

reality”. The challenge to an application designer, there-

fore, is to provide contextual visualizations which provide 

unambiguous visual representation of the states and transi-

tions we have described, while maintaining visual consis-

tency with their overall design. 

The final set of design concerns relate to those seeking to 

implement a Ripples-like system. Providing visualizations 

for the states and transitions described above is sufficient to 

address feedback ambiguity. However, careful considera-

tion must still be made with respect to visual design issues. 

Visual Overhead 

Adding visualizations to every contact point creates some 

visual overhead. It was our goal to provide a visualization 

that acts as an information channel, while not distracting 

the user from their primary task or occluding content.  Sev-

eral iterations on the design, guided through consultation, 

prototyping, and reactions from our target users, saw a con-

stant reduction in their size and complexity. Many different 

visualization and rendering techniques were attempted. 

Ultimately, it became clear that a minimalist design was 

required, rendering only enough to visually convey the pa-

rameters necessary to eliminate feedback ambiguity. 

Touch Visuals Final Rendering 

As we described, the design underwent several iterations. 

The issue of visual overhead in particular required several 

changes. A particularly surprising outcome of our process 

was the transition away from simple, minimal circles around 

the fingers (‘halos’) to the partially transparent amorphous 

shape (Figure 13). It was this iteration that largely eliminated 

complaints of visual overhead and distraction. 

 

Figure 13. Rendering of Ripples contact visualiza-
tion. Left: what the users see. Centre, right: what is 
rendered beneath the finger. 



 

    

Alternative Design Approaches 

Several designs were ultimately rejected as part of our it-

erative design process. In order to help those looking to 

build on our work, we review two of the approaches in par-

ticular, and describe why they were rejected. 

The first is the version shown in Figure 14. This approach 

provided a large canvas for visualizing parameters, but was 

ultimately rejected. 

 

Figure 14. Rejected design for various states. The 
visual seemed to ‘get between’ users and content. 

A subsequent iteration placed a solid ‘halo’ around each 

contact. While minimalist, this design too was rejected 

through our iterative process. Feedback indicated that it 

was too ‘large’, even when the halo was made to be as 

small as it could be and still be visible beneath the finger. 

 

Figure 15. A follow-up design: a ‘halo’ placed 
around each contact was described as ‘too large’ in 
informal evaluations, no matter its size. 

This led us to begin to explore less distinct, filled shapes, 

which led ultimately to our ultimate design (Figure 13). We 

found that this approach, when combined with transpar-

ency, largely eliminated complaints of visual overhead. 

ACKNOWLEDGMENTS 

The authors would like to thank various members of Mi-

crosoft Research and Microsoft Surface groups, our partici-

pants, and paper reviewers for valuable feedback. In par-

ticular, we thank Bryan Beatty, Merrie Morris, and Jarrod 

Lombardo for their assistance. 

REFERENCES 
1. Albinsson, P. and Zhai, S. (2003). High precision touch screen 

interaction. CHI ‘03. 105-112. 

2. Baudisch, P., et al. (2006). Phosphor: Explaining Transitions in the 

User Interface Using Afterglow Effects. UIST ‘06, 169-174. 

3. Benko, H., et al. (2006). Precise selection techniques for multi-

touch screens. CHI ‘06. 1263-1272. 

4. Buxton, W. (1990). A Three-State Model of Graphical Input. 

Human-Computer Interaction - INTERACT '90. 449-456. 

5. Dietz, P. and Leigh, D. (2001). DiamondTouch: a multi-user touch 

technology. UIST 2001. 219-226. 

6. Esenther, A., Ryall, K., (2006). Fluid DTMouse: Better Mouse 

Support for Touch-Based Interactions. AVI 2006. 112- 115. 

7. Forlines, C., Shen, C., (2005). DTLens: Multi-User Tabletop Spatial 

Data Exploration. UIST ’05. 119-122. 

8. Forlines, C. et al. (2006). HybridPointing: Fluid switching between 

abs and relative pointing with a direct input device. UIST ‘06. 211-220. 

9. Han, J. (2005). Low-cost multi-touch sensing through frustrated 

total internal reflection. UIST ‘05. 115-118. 

10. Hancock, M.S., et al. (2005). Exploring non-speech auditory 

feedback at an interactive multi-user tabletop. GI ’05. 41-50. 

11. Hiraoka, S. et al. (2003) Behind Touch, a Text Input Method for 

Mobile Phones by The Back and Tactile Sense Interface. 

Information Processing Society of Japan, Interaction ‘03. 131-138. 

12. ISO, 2002. Reference Number: ISO 9241-9:2000(E). Ergonomic 

requirements for office work with visual display terminals 

(VDTs)—Part 9—Requirements for non-keyboard input devices 

(ISO 9241-9) (Vol. February 15, 2002). ISO. 

13. Matsushita, N., Rekimoto, J. (1997). HoloWall: designing a finger, 

hand, body, and object sensing wall. UIST ’97.  209-210. 

14. Poupyrev, I., et al. (2002). Ambient Touch: Designing tactile 

interfaces for handheld devices. UIST ‘02. 51-60. 

15. Potter, R., Weldon, L., and Shneiderman, B. (1988). Improving the 

accuracy of touch screens: an experimental evaluation of three 

strategies. Proceedings of CHI ‘88. p. 27-32. 

16. Rekimoto, J. (2002). SmartSkin: an infrastructure for freehand 

manipulation on interactive surfaces. CHI ‘02. 113-120. 

17. Ryall, K. et al. (2006). Experiences with and Observations of 

Direct-Touch Tabletops. Tabletop ’06. 89-96. 

18. Schilit, B. et al. (1994). Context-Aware Computing Applications. 

Workshop on Mobile Computing Systems and Applications. 85-90. 

19. Shen, C. et al. (2004). DiamondSpin: an extensible toolkit for 

around-the-table interaction. CHI '04.  167-174. 

20. Shen, C. et al. (2006) Informing the Design of Direct-Touch 

Tabletops, Special Issue of IEEE Computer Graphics and 

Applications, September/October, 2006. 

21. Siek, K.A. et al. (2005). Fat Finger Worries: How Older and 

Younger Users Physically Interact with PDAs. INTERACT ’05. 

267-280.  

22. Touchlib, A Multi-Touch Development Kit (http://nuigroup.com/touchlib/). 

23. Vogel, D. and Baudisch, P. (2007). Shift: A Technique for 

Operating Pen-Based Interfaces Using Touch. To appear in CHI 

‘07. 657-666. 

24. Wigdor, D. et al. (2006). Under the table interaction. Proceedings of 

UIST ‘06. 259-268. 

25. Wigdor, D. et al. (2007). LucidTouch: A See-Through Mobile 

Device. UIST ’07. 269-278. 

26. Wigdor, D. et al. (2007). Living with a Tabletop: Analysis and 

Observations of Long Term Office Use of a Multi-Touch 

Table. Tabletop ’07. 60-67.  

27. Wilson, A. D. (2004). TouchLight: an imaging touch screen and 

display for gesture-based interaction. ICMI '04. 69-76. 

28. Wu, M. et al. Gesture Registration, Relaxation, and Reuse for 

Multi-Point Direct-Touch Surfaces. TableTop ‘06. 183-190. 

 


